Use of quantitative real-time PCR for studying the dissemination of Leptospira interrogans in the guinea pig infection model of leptospirosis.

Institut Pasteur, Unité de Biologie des Spirochètes, Paris, France.
Journal of Medical Microbiology (Impact Factor: 2.27). 06/2009; 58(Pt 5):648-55. DOI: 10.1099/jmm.0.008169-0
Source: PubMed

ABSTRACT The dynamics of leptospirosis infection have been poorly studied. The purpose of this study was to determine the LD(50), rate of bacterial dissemination, histopathology and antibody responses against leptospira following inoculation with the highly virulent Leptospira interrogans Fiocruz L1-130 strain in a guinea pig model of leptospirosis. Three routes of infection (intraperitoneal, conjunctival and subcutaneous inoculation) were used to establish disease in guinea pigs. The size and kinetics of leptospiral burdens in the blood and tissues of infected animals were determined over a 1 week course of infection using quantitative real-time PCR (qPCR). Bacteraemia peaked at day 5 post-infection reaching more than 5x10(4) leptospires ml(-1). The highest spirochaetal load was found in the liver and kidneys, and was associated with alterations in organ tissues and a decline in liver and kidney functions. In contrast, lesions and bacteria were not detected in guinea pigs infected with an avirulent strain derived from a high-passage-number in vitro-passaged variant of the Fiocruz L1-130 strain. The use of qPCR supports the findings of earlier studies and provides an easy and reliable method for the quantification of L. interrogans in the tissues of infected animals. qPCR will be used in future studies to evaluate the efficacy of vaccine candidates against leptospirosis and the virulence of selected L. interrogans mutants relative to the parental strain.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptospirosis is a zoonosis caused by highly motile, helically shaped bacteria that penetrate the skin and mucous membranes through lesions or abrasions, and rapidly disseminate throughout the body. Although the intraperitoneal route of infection is widely used to experimentally inoculate hamsters, this challenge route does not represent a natural route of infection. Here we describe the kinetics of disease and infection in hamster model of leptospirosis after subcutaneous and intradermal inoculation of Leptospira interrogans serovar Copenhageni, strain Fiocruz L1-130. Histopathologic changes in and around the kidney, including glomerular and tubular damage and interstitial inflammatory changes, began on day 5, and preceded deterioration in renal function as measured by serum creatinine. Weight loss, hemoconcentration, increased absolute neutrophil counts (ANC) in the blood and hepatic dysfunction were first noted on day 6. Vascular endothelial growth factor, a serum marker of sepsis severity, became elevated during the later stages of infection. The burden of infection, as measured by quantitative PCR, was highest in the kidney and peaked on day 5 after intradermal challenge and on day 6 after subcutaneous challenge. Compared to subcutaneous challenge, intradermal challenge resulted in a lower burden of infection in both the kidney and liver on day 6, lower ANC and less weight loss on day 7. The intradermal and subcutaneous challenge routes result in significant differences in the kinetics of dissemination and disease after challenge with L. interrogans serovar Copenhageni strain Fiocruz L1-130 at an experimental dose of 2×106 leptospires. These results provide new information regarding infection kinetics in the hamster model of leptospirosis.
    PLoS Neglected Tropical Diseases 11/2014; 8(11):e3307. DOI:10.1371/journal.pntd.0003307 · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Is necessary to develop models for the study of leptospirosis. To genotype a Colombian strain of Leptospira isolated from a human with Weil´s syndrome and to evaluate its infection dynamics in the hamster experimental model. Genotyping was performed by amplification and sequence analysis of the rrs 16S and lipL32 genes. The median lethal dose was determined in intraperitoneally inoculated hamsters. The patterns of clinical chemistry, the duration of leptospiremia, leptospiruria and pathological findings were studied and compared in the same animal model infected with L. interrogans (Fiocruz L1-130). Molecular typing revealed that the isolate corresponded to the pathogenic species L. santarosai, which was recovered from hamsters´ kidneys and lungs and detected by lipL32 PCR from day 3 post-infection in these organs. There was a marked increase of C-reactive protein in animals at day 5 post-infection (3.25 mg/dl; normal value: 0.3 mg/dl) with decreases by day 18 (2.60 mg/dl: normal value: 0.8 mg/dl). Biomarkers of urea showed changes consistent with possible renal acute failure (day 5 post-infection: 49.01 mg/dl and day 18 post-infection: 53.71 mg/dl). Histopathological changes included interstitial pneumonia with varying degrees of hemorrhage and interstitial nephritis. The pathogenic species L. santarosai was identified in Colombia. Its pathogenicity as determined by tropism to lung and kidney was comparable to that of L. interrogans Fiocruz L1-130, well known for its virulence and pulmonar tropism. The biological aspects studied here had never before been evaluated in an autochthonous isolate.
    Biomédica: revista del Instituto Nacional de Salud 09/2014; 34(3):460-72. DOI:10.1590/S0120-41572014000300015 · 0.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a powerful new tool to challenge mice treated with drugs or vaccines, and test the survival, dissemination, and transmission of leptospires between environment and hosts.
    PLoS Neglected Tropical Diseases 12/2014; 8(12):e3359. DOI:10.1371/journal.pntd.0003359 · 4.49 Impact Factor