Dysfunctions of Cortical Excitability in Drug-Naïve Posttraumatic Stress Disorder Patients

Department of Neuroscience, Neurology Section, University of Siena School of Medicine, Siena, Italy.
Biological psychiatry (Impact Factor: 9.47). 05/2009; 66(1):54-61. DOI: 10.1016/j.biopsych.2009.03.008
Source: PubMed

ABSTRACT The investigation of a wide set of transcranial magnetic stimulation (TMS)-related variables in both hemispheres might help to identify a pattern of cortical excitability changes in posttraumatic stress disorder (PTSD) patients, reflecting gamma-amino-butiric acid (GABA)/glutamate balance and dysfunction, and to determine whether some of these variables are related to clinical features.
In 20 drug-naive PTSD patients without comorbidity and 16 matched healthy control subjects we tested bilaterally with standard TMS procedures: resting motor threshold (RMT) to single-pulse TMS (reflecting ion channel function), paired-pulse short-latency intracortical inhibition (SICI; mainly reflecting GABA(A) function) and intracortical facilitation (ICF; mainly reflecting glutamatergic function), single-pulse cortical silent period (CSP; mainly reflecting GABA(B)-ergic function), and paired-pulse short-latency afferent inhibition (SAI; reflecting cholinergic mechanisms and their presynaptic GABA(A)-mediated modulation).
The PTSD patients showed widespread impairment of GABA(A)-ergic SICI, which was reversed toward facilitation in both hemispheres in one-half of the patients, marked increase of glutamatergic ICF in the right hemisphere, and right-sided impairment of SAI. Illness duration and avoidance symptoms but not anxiety correlated with right-lateralized dysfunctions of cortical excitability.
Although the neurobiological complexity of each TMS variable makes current results theoretical, the pattern of cortical excitability accompanying PTSD symptoms suggests a bilateral decrease of the GABA(A)-ergic function. This prevails in the right hemisphere, in association with a relative prevalence of the glutamatergic tone, a new finding that current neuroimaging investigations cannot provide due to the lack of reliable glutamate tracers. Results might help to disclose new pathophysiological aspects of PTSD symptoms, providing a rationale for future neuromodulatory strategies of treatment.

Download full-text


Available from: Simone Rossi, Aug 25, 2015
  • Source
    • "The efficiency of this motor cortical inhibition circuit is influenced by benzodiazepines (Di Lazzaro et al., 2007a), consistent with a role of the GABAergic system in controlling acetylcholine release in the cortex (Giorgetti et al., 2000). Also, SAI is decreased in patients with obsessive-compulsive disorder (Russo et al., 2014) and posttraumatic stress disorder (Rossi et al., 2009), which are both psychiatric conditions involving a GABAergic imbalance but with limited cholinergic involvement. The age-related reductions in SAI described in this study may thus reflect not only declines in cholinergic activity but also alterations in GABAergic transmission , though this system appears to be relatively spared in aging (Rissman et al., 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cortical plasticity, including long-term potentiation (LTP)-like plasticity, can be assessed non-invasively with repetitive transcranial magnetic stimulation (rTMS) protocols. In this study, we examined age differences in responses to intermittent theta burst stimulation (iTBS) in a group of 20 young and 18 healthy older adults. Because the cholinergic system plays a role in the neural processes underlying learning and memory, including LTP, we also investigated whether short latency afferent inhibition (SAI), a neurophysiological marker of central cholinergic activity, would be associated with age-related differences in LTP-like plasticity induced by iTBS. Methods: SAI was first assessed by examining the modulation of motor evoked potentials (MEPs) in response to median nerve conditioning 20 ms prior to TMS. Participants then underwent iTBS (3 pulses at 50 Hz every 200 ms for 2 s with 8 s between trains, repeated 20 times). MEP responses (120% resting motor threshold (RMT)) were assessed immediately after iTBS and 5, 10, and 20 min post-application. Results: Responses to iTBS were quite variable in both age groups, with only approximately 60% of the participants (n = 13 young and 10 older adults) showing the expected facilitation of MEP responses. There were no significant age group differences in MEP facilitation following iTBS. Although older adults exhibited reduced SAI, individual variations were not associated with susceptibility to express LTP-like induced plasticity after iTBS. Conclusion: Overall, these results are consistent with reports of high inter-individual variability in responses to iTBS. Although SAI was reduced in older adults, consistent with a deterioration of the cholinergic system with age, SAI levels were not associated with LTP-like plasticity as assessed with iTBS.
    Frontiers in Aging Neuroscience 08/2014; DOI:10.3389/fnagi.2014.00182 · 2.84 Impact Factor
  • Source
    • "Alterations in the insula, orbitofrontal cortex, posterior cingulate and parietal somatosensory regions have also been described (Bremner et al., 2008; Liberzon and Sripada, 2008). In addition to regionalized brain dysfunction in PTSD, cortical excitability changes in PTSD have been demonstrated by the application of single-pulse transcranial magnetic stimulation (TMS) to the motor cortex of drug naı¨ve patients (Rossi et al., 2009). The authors contend that prolonged illness could be associated with lasting (GABAa related) functional or structural changes even in brain regions such as the motor cortex that are outside, although functionally connected with, regions usually found dysfunctional in PTSD, such as the anterior cingulate cortex, amygdala, limbic and paralimbuc regions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with posttraumatic stress disorder (PTSD) experience psychological and physiological distress. However, imaging research has mostly focused on the psychological aspects of the disorder. Considered an expression of distress, heart rate (HR) in PTSD is often elevated. In the current study, we sought to identify brain regions associated with increased HR in PTSD. Nine patients with PTSD and six healthy trauma-survivors were scanned resting, clenching teeth and listening to neutral and traumatic scripts. Brain function was evaluated using H2O15 positron emission tomography (PET). HR was monitored by electrocardiogram. Data were analyzed using statistical parametric mapping (SPM). Subjects with PTSD exhibited a significant increase in HR upon exposure to traumatic scripts, while trauma survivors did not. Correlations between cerebral blood flow and HR were found only in patients with PTSD, in orbitofrontal, precentral and occipital regions. Neither group showed correlation between rCBF and HR in the amygdala or hippocampus. These preliminary results indicate that "top down" CNS regulation of autonomic stress response in PTSD may involve associative, sensory and motor areas in addition to regions commonly implicated in fear conditioning.
    11/2012; 204(2-3). DOI:10.1016/j.pscychresns.2012.08.007
  • Source
    • "This is particularly relevant since both depression and PTSD have specific cortical excitability dysfunction profiles that are different from that of TBI. In PTSD, hemispheric-specific reductions in SICI and SAI (Rossi et al., 2009) have been reported, whereas depressive patients show a consistent pattern of right-left hemisphere motor threshold INHIBITORY DYSFUNCTION IN SPORTS CONCUSSION 499 differences (Maeda et al., 2000) and reduced CSP durations (Bajbouj et al., 2006). Further studies will be necessary to determine the value of TMS measures in the differential diagnosis of these pathologies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sports concussions affect thousands of individuals every year and are a major public health concern. Still, little is known about the long-term and cumulative effects of concussions on brain neurophysiology. The principal objective of this study was to investigate the long-lasting effects of multiple sports concussions on sensorimotor integration and somatosensory processing in a sample of 12 concussed athletes and 14 non-concussed athletes of similar age (mean, 23 years) and education (mean, 16 years). Right median nerve stimulation was paired with transcranial magnetic stimulation (TMS) of the left primary motor cortex to investigate sensorimotor integration with short latency afferent inhibition (SAI) and long latency afferent inhibition (LAI) at five interstimulus intervals (18, 20, 22, 100, 200 msec). Somatosensory evoked potentials (SEP) were recorded from the left centro-parietal region. We also investigated primary motor cortex inhibitory mechanisms with three TMS protocols: cortical silent period, long interval intracortical inhibition, and short interval intracortical inhibition. Motor evoked potentials were recorded from the right abductor pollicis brevis muscle. No differences were observed between groups for SAI, LAI, and SEP. However, cortical silent period duration was prolonged and long interval intracortical inhibition was enhanced in the concussed group. These findings suggest that multiple sports concussions lead to specific, long-term neurophysiological dysfunctions of intracortical inhibitory mechanisms in primary motor cortex while somatosensory processing and sensorimotor integration are spared. This study provides additional evidence for the presence of specific and stable alterations of GABA(B) receptor activity in primary motor cortex that may be of clinical value for prognosis and diagnosis.
    Journal of neurotrauma 04/2011; 28(4):493-502. DOI:10.1089/neu.2010.1615 · 3.97 Impact Factor
Show more