Dysfunctions of Cortical Excitability in Drug-Naïve Posttraumatic Stress Disorder Patients

Department of Neuroscience, Neurology Section, University of Siena School of Medicine, Siena, Italy.
Biological psychiatry (Impact Factor: 10.26). 05/2009; 66(1):54-61. DOI: 10.1016/j.biopsych.2009.03.008
Source: PubMed


The investigation of a wide set of transcranial magnetic stimulation (TMS)-related variables in both hemispheres might help to identify a pattern of cortical excitability changes in posttraumatic stress disorder (PTSD) patients, reflecting gamma-amino-butiric acid (GABA)/glutamate balance and dysfunction, and to determine whether some of these variables are related to clinical features.
In 20 drug-naive PTSD patients without comorbidity and 16 matched healthy control subjects we tested bilaterally with standard TMS procedures: resting motor threshold (RMT) to single-pulse TMS (reflecting ion channel function), paired-pulse short-latency intracortical inhibition (SICI; mainly reflecting GABA(A) function) and intracortical facilitation (ICF; mainly reflecting glutamatergic function), single-pulse cortical silent period (CSP; mainly reflecting GABA(B)-ergic function), and paired-pulse short-latency afferent inhibition (SAI; reflecting cholinergic mechanisms and their presynaptic GABA(A)-mediated modulation).
The PTSD patients showed widespread impairment of GABA(A)-ergic SICI, which was reversed toward facilitation in both hemispheres in one-half of the patients, marked increase of glutamatergic ICF in the right hemisphere, and right-sided impairment of SAI. Illness duration and avoidance symptoms but not anxiety correlated with right-lateralized dysfunctions of cortical excitability.
Although the neurobiological complexity of each TMS variable makes current results theoretical, the pattern of cortical excitability accompanying PTSD symptoms suggests a bilateral decrease of the GABA(A)-ergic function. This prevails in the right hemisphere, in association with a relative prevalence of the glutamatergic tone, a new finding that current neuroimaging investigations cannot provide due to the lack of reliable glutamate tracers. Results might help to disclose new pathophysiological aspects of PTSD symptoms, providing a rationale for future neuromodulatory strategies of treatment.

Download full-text


Available from: Simone Rossi,
  • Source
    • "The efficiency of this motor cortical inhibition circuit is influenced by benzodiazepines (Di Lazzaro et al., 2007a), consistent with a role of the GABAergic system in controlling acetylcholine release in the cortex (Giorgetti et al., 2000). Also, SAI is decreased in patients with obsessive-compulsive disorder (Russo et al., 2014) and posttraumatic stress disorder (Rossi et al., 2009), which are both psychiatric conditions involving a GABAergic imbalance but with limited cholinergic involvement. The age-related reductions in SAI described in this study may thus reflect not only declines in cholinergic activity but also alterations in GABAergic transmission , though this system appears to be relatively spared in aging (Rissman et al., 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cortical plasticity, including long-term potentiation (LTP)-like plasticity, can be assessed non-invasively with repetitive transcranial magnetic stimulation (rTMS) protocols. In this study, we examined age differences in responses to intermittent theta burst stimulation (iTBS) in a group of 20 young and 18 healthy older adults. Because the cholinergic system plays a role in the neural processes underlying learning and memory, including LTP, we also investigated whether short latency afferent inhibition (SAI), a neurophysiological marker of central cholinergic activity, would be associated with age-related differences in LTP-like plasticity induced by iTBS. Methods: SAI was first assessed by examining the modulation of motor evoked potentials (MEPs) in response to median nerve conditioning 20 ms prior to TMS. Participants then underwent iTBS (3 pulses at 50 Hz every 200 ms for 2 s with 8 s between trains, repeated 20 times). MEP responses (120% resting motor threshold (RMT)) were assessed immediately after iTBS and 5, 10, and 20 min post-application. Results: Responses to iTBS were quite variable in both age groups, with only approximately 60% of the participants (n = 13 young and 10 older adults) showing the expected facilitation of MEP responses. There were no significant age group differences in MEP facilitation following iTBS. Although older adults exhibited reduced SAI, individual variations were not associated with susceptibility to express LTP-like induced plasticity after iTBS. Conclusion: Overall, these results are consistent with reports of high inter-individual variability in responses to iTBS. Although SAI was reduced in older adults, consistent with a deterioration of the cholinergic system with age, SAI levels were not associated with LTP-like plasticity as assessed with iTBS.
    Frontiers in Aging Neuroscience 08/2014; DOI:10.3389/fnagi.2014.00182 · 4.00 Impact Factor
  • Source
    • "Whether tDCS exerts online effects is a more controversial question. Previous studies suggested that anodal tDCS decreased (10) or increased the MEP amplitude (51) during its application on the motor cortex, while C-tDCS reduced corticospinal excitability if tested online (51). Differential online effects of anodal and cathodal stimulation have been already suggested in terms of intracortical inhibition or facilitation changes (50) with no online effects of A-tDCS, whereas C-tDCS reduced facilitation during, and additionally increased inhibition after its administration. "
    [Show abstract] [Hide abstract]
    ABSTRACT: While polarity-specific after-effects of monopolar transcranial direct current stimulation (tDCS) on corticospinal excitability are well-documented, modulation of vital parameters due to current spread through the brainstem is still a matter of debate, raising potential concerns about its use through the general public, as well as for neurorehabilitation purposes. We monitored online and after-effects of monopolar tDCS (primary motor cortex) in 10 healthy subjects by adopting a neuronavigated transcranial magnetic stimulation (TMS)/tDCS combined protocol. Motor evoked potentials (MEPs) together with vital parameters [e.g., blood pressure, heart-rate variability (HRV), and sympathovagal balance] were recorded and monitored before, during, and after anodal, cathodal, or sham tDCS. Ten MEPs, every 2.5-min time windows, were recorded from the right first dorsal interosseous (FDI), while 5-min epochs were used to record vital parameters. The protocol included 15 min of pre-tDCS and of online tDCS (anodal, cathodal, or sham). After-effects were recorded for 30 min. We showed a polarity-independent stabilization of cortical excitability level, a polarity-specific after-effect for cathodal and anodal stimulation, and an absence of persistent excitability changes during online stimulation. No significant effects on vital parameters emerged both during and after tDCS, while a linear increase in systolic/diastolic blood pressure and HRV was observed during each tDCS condition, as a possible unspecific response to experimental demands. Taken together, current findings provide new insights on the safety of monopolar tDCS, promoting its application both in research and clinical settings.
    Frontiers in Psychiatry 07/2014; 5:86. DOI:10.3389/fpsyt.2014.00086
  • Source
    • "Meanwhile, glutamate is the primary excitatory neurotransmitter in the brain, acting in concert with GABA to control the balance of excitation and inhibition in many brain circuits. The inhibition of GABA may cause hypervigilance [16,54]. The level of GABA was significantly elevated in the stress group. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background People who experience traumatic events have an increased risk of post-traumatic stress disorder (PTSD). However, PTSD-related pathological changes in the hippocampus and prefrontal cortex remain poorly understood. Material/Methods We investigated the effect of a PTSD-like animal model induced by severe stress. The experimental rats received 20 inescapable electric foot shocks in an enclosed box for a total of 6 times in 3 days. The physiological state (body weight and plasma corticosterone concentrations), emotion, cognitive behavior, brain morphology, apoptosis, and balance of gamma-aminobutyric acid (GABA) and glutamate in the hippocampus and prefrontal cortex were observed. Cell damages were examined with histological staining (HE, Nissl, and silver impregnation), while apoptosis was analyzed with flow cytometry using an Annexin V and propidium iodide (PI) binding and terminal deoxynucleotidyl transferase mediated-dUTP nick end labeling (TUNEL) method. Results In comparison with the sham litter-mates, the stressed rats showed decreased body weight, inhibition of hypothalamic-pituitary-adrenal (HPA) axis activation, increase in freezing response to trauma reminder, hypoactivity and anxiety-like behaviors in elevated plus maze and open field test, poor learning in Morris water maze, and shortened latency in hot-plate test. There were significant damages in the hippocampus but not in the prefrontal cortex. Imbalance between glutamate and GABA was more evident in the hippocampus than in the prefrontal cortex. Conclusions These results suggest that neuronal apoptosis in the hippocampus after severe traumatic stress is related to the imbalance between glutamate and GABA. Such modifications may resemble the profound changes observed in PTSD patients.
    Medical science monitor: international medical journal of experimental and clinical research 03/2014; 20:499-512. DOI:10.12659/MSM.890589 · 1.43 Impact Factor
Show more