Structure and function of interacting IcmR-IcmQ domains from a type IVb secretion system in Legionella pneumophila.

Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA.
Structure (Impact Factor: 6.79). 05/2009; 17(4):590-601. DOI: 10.1016/j.str.2009.02.011
Source: PubMed

ABSTRACT During infection, Legionella pneumophila creates a replication vacuole within eukaryotic cells and this requires a Type IVb secretion system (T4bSS). IcmQ plays a critical role in the translocase and associates with IcmR. In this paper, we show that the N-terminal domain of IcmQ (Qn) mediates self-dimerization, whereas the C-terminal domain with a basic linker promotes membrane association. In addition, the binding of IcmR to IcmQ prevents self-dimerization and also blocks membrane permeabilization. However, IcmR does not completely block membrane binding by IcmQ. We then determined crystal structures of Qn with the interacting region of IcmR. In this complex, each protein forms an alpha-helical hairpin within a parallel four-helix bundle. The amphipathic nature of helices in Qn suggests two possible models for membrane permeabilization by IcmQ. The Rm-Qn structure also suggests how IcmR-like proteins in other L. pneumophila species may interact with their IcmQ partners.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii uses specialized secretory organelles called rhoptries to deliver virulence determinants into the host cell during parasite invasion. One such determinant called rhoptry protein 18 (ROP18) is a polymorphic serine/threonine kinase that phosphorylates host targets to modulate acute virulence. Following secretion into the host cell, ROP18 traffics to the parasitophorous vacuole membrane (PVM) where it is tethered to the cytosolic face of this host-pathogen interface. However, the functional consequences of PVM association are not known. In this report, we show that ROP18 mutants altered in an arginine-rich domain upstream of the kinase domain fail to associate to the PVM following secretion from rhoptries. During infection, host cells upregulate immunity-related GTPases that localize to and destroy the PVM surrounding the parasites. ROP18 disarms this host innate immune pathway by phosphorylating IRGs in a critical GTPase domain and preventing loading on the PVM. Vacuole-targeting mutants of ROP18 failed to phosphorylate Irga6 and were unable to divert IRGs from the PVM, despite retaining intrinsic kinase activity. As a consequence, these mutants were avirulent in a mouse model of acute toxoplasmosis. Thus, the association of ROP18 with the PVM, mediated by its N-terminal arginine-rich domain, is critical to its function as a virulence determinant.
    Cellular Microbiology 08/2012; · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A Type 4b secretion system (T4bSS) is required for Legionella growth in alveolar macrophages. IcmQ associates with IcmR, binds to membranes, and has a critical role in the T4bSS. We have now solved a crystal structure of IcmR-IcmQ to further our understanding of this complex. This structure revealed an amphipathic four-helix bundle, formed by IcmR and the N-terminal domain of IcmQ, which is linked to a novel C-terminal domain of IcmQ (Qc) by a linker helix. The Qc domain has structural homology with ADP ribosyltransferase domains in certain bacterial toxins and binds NAD(+) with a dissociation constant in the physiological range. Structural homology and molecular dynamics were used to identify an extended NAD(+) binding site on Qc, and the resulting model was tested by mutagenesis and binding assays. Based on the data, we suggest that IcmR-IcmQ binds to membranes, where it may interact with, or perhaps modify, a protein in the T4bSS when NAD(+) is bound.
    Structure 07/2013; · 6.79 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014