Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-alpha expression.

Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.
Blood (Impact Factor: 9.06). 05/2009; 113(24):6112-9. DOI: 10.1182/blood-2008-07-170803
Source: PubMed

ABSTRACT We characterized the localization, phenotype, and some functions of plasmacytoid dendritic cells (pDCs) in the human spleen. pDCs were localized in the marginal zone and the periarteriolar region. Some were also found in the red pulp. pDCs were immature by phenotypic labeling, consistently with their capacity to internalize Dextran in a functional assay. In spleens from HIV-infected patients with thrombocytopenic purpura, these characteristics were unaffected. However, an accumulation of pDCs, but not myeloid dendritic cells (mDCs), was observed in some HIV+ patients, correlating with high proviral loads. Moreover, although undetectable in most HIV- patients, interferon-alpha (IFN-alpha) production was evidenced in situ and by flow cytometry in most HIV+ patients. IFN-alpha was located in the marginal zone. Surprisingly, IFN-alpha colocalized only with few pDCs, but rather with other cells, including T and B lymphocytes, mDCs, and macrophages. Therefore, pDCs accumulated in spleens from HIV+ patients with high proviral loads, but they did not seem to be the main IFN-alpha producers.

  • [Show abstract] [Hide abstract]
    ABSTRACT: IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα(+) pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα(+) cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα(-) production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67(+)-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67(+)-pDC precursors, none of these being IFNα(+) in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors.
    PLoS Pathogens 01/2014; 10(1):e1003915. · 8.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thymus dysfunction characterizes human/simian immunodeficiency virus (SIV) infections and contributes to physiopathology. However, both the mechanisms involved in thymic dysfunction and its precise timing remain unknown. We here analyzed thymic function during acute SIV infection in rhesus macaques. Rhesus macaques were intravenously infected with SIVmac251 and bled every 2/3 days or necropsied at different early time points postinfection. Naive T-cell counts were followed by flow cytometry and their T-cell receptor excision circle content evaluated by qPCR. Thymic chemokines were quantified by reverse transcription-qPCR and localized by in-situ hybridization in thymuses collected at necropsy. Thymic interferon alpha (IFN-α) subtype production was quantified by reverse transcription-qPCR combined to heteroduplex tracking assay. The effect of thymic IFN-α subtypes was tested on sorted triple negative thymocytes cultured on OP9-hDL1 cells. A reduced intrathymic proliferation history characterizes T cells produced during the first weeks of infection. Moreover, we evidenced a profound alteration of both chemokines and IFN-α subtypes transcriptional patterns in SIV-infected thymuses. Finally, we showed that IFN-α subtypes produced in the infected thymuses inhibit thymocyte proliferation, still preserving their differentiation capacity. Thymopoiesis is deeply impacted from the first days of SIV infection. Reduced thymocyte proliferation - a time-consuming process - together with modified chemokine networks is consistent with thymocyte differentiation speed-up. This may transiently enhance thymic output, thus increasing naive T-cell counts and diversity and the immune competence of the host. Nonetheless, long-lasting modification of thymic physiology may lead to thymic exhaustion, as observed in late primary HIV infection.
    AIDS (London, England) 03/2014; · 4.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are a family of professional antigen-presenting cells that have an indispensable role in the initiation of innate and adaptive immune responses against pathogens and tumor cells. The DC family is very heterogeneous. Two main types of naturally occurring DCs circulate in peripheral blood, each with its unique phenotypic and functional characteristics: myeloid DCs and plasmacytoid. There is an ample number of studies that have focused on the bi-directional crosstalk between DCs and natural killer cells or T cells. However, the crosstalk among the different DC subsets, in the context of infectious diseases and cancer, has until now not received much attention. Here, we review all available literature that has dealt with the crosstalk between plasmacytoid and myeloid DCs and the potential mode of action. Emphasis will be given to the therapeutic potential of the combination of DC subsets for DC-based immunotherapy.
    Expert Review of Clinical Immunology 04/2014; · 2.89 Impact Factor