Article

Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation

Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2009; 106(16):6754-9. DOI: 10.1073/pnas.0809131106
Source: PubMed

ABSTRACT Enterohemorrhagic Escherichia coli O157:H7 translocates 2 effectors to trigger localized actin assembly in mammalian cells, resulting in filamentous actin "pedestals." One effector, the translocated intimin receptor (Tir), is localized in the plasma membrane and clustered upon binding the bacterial outer membrane protein intimin. The second, the proline-rich effector EspF(U) (aka TccP) activates the actin nucleation-promoting factor WASP/N-WASP, and is recruited to sites of bacterial attachment by a mechanism dependent on an Asn-Pro-Tyr (NPY(458)) sequence in the Tir C-terminal cytoplasmic domain. Tir, EspF(U), and N-WASP form a complex, but neither EspF(U) nor N-WASP bind Tir directly, suggesting involvement of another protein in complex formation. Screening of the mammalian SH3 proteome for the ability to bind EspF(U) identified the SH3 domain of insulin receptor tyrosine kinase substrate (IRTKS), a factor known to regulate the cytoskeleton. Derivatives of WASP, EspF(U), and the IRTKS SH3 domain were capable of forming a ternary complex in vitro, and replacement of the C terminus of Tir with the IRTKS SH3 domain resulted in a fusion protein competent for actin assembly in vivo. A second domain of IRTKS, the IRSp53/MIM homology domain (IMD), bound to Tir in a manner dependent on the C-terminal NPY(458) sequence, thereby recruiting IRTKS to sites of bacterial attachment. Ectopic expression of either the IRTKS SH3 domain or the IMD, or genetic depletion of IRTKS, blocked pedestal formation. Thus, enterohemorrhagic E. coli translocates 2 effectors that bind to distinct domains of a common host factor to promote the formation of a complex that triggers robust actin assembly at the plasma membrane.

Full-text

Available from: Loranne Magoun, May 24, 2015
0 Followers
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Citrobacter rodentium is a mucosal pathogen of mice that shares several pathogenic mechanisms with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), which are two clinically important human gastrointestinal pathogens. Thus, C. rodentium has long been used as a model to understand the molecular basis of EPEC and EHEC infection in vivo. In this Review, we discuss recent studies in which C. rodentium has been used to study mucosal immunology, including the deregulation of intestinal inflammatory responses during bacteria-induced colitis and the role of the intestinal microbiota in mediating resistance to colonization by enteric pathogens. These insights should help to elucidate the roles of mucosal inflammatory responses and the microbiota in the virulence of enteric pathogens.
    Nature Reviews Microbiology 08/2014; DOI:10.1038/nrmicro3315 · 23.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enterohemorrhagic E. coli (EHEC) manipulate their human host through at least 39 effector proteins which hijack host processes through direct protein-protein interactions (PPIs). To identify their protein targets in the host cells, we performed yeast two-hybrid screens, allowing us to find 48 high-confidence protein-protein interactions between 15 EHEC effectors and 47 human host proteins. In comparison to other bacteria and viruses we found that EHEC effectors bind more frequently to hub proteins as well as to proteins that participate in a higher number of protein complexes. The data set includes six new interactions that involve the translocated intimin receptor (TIR), namely HPCAL1, HPCAL4, NCALD, ARRB1, PDE6D, and STK16. We compared these TIR interactions in EHEC and enteropathogenic E. coli (EPEC) and found that five interactions were conserved. Notably, the conserved interactions included those of serine/threonine kinase 16 (STK16), hippocalcin-like 1 (HPCAL1) as well as neurocalcin-delta (NCALD). These proteins co-localize with the infection sites of EPEC. Furthermore, our results suggest putative functions of poorly characterized effectors (EspJ, EspY1). In particular, we observed that EspJ is connected to the microtubule system while EspY1 appears to be involved in apoptosis/cell cycle regulation.
    Scientific Reports 12/2014; 4:7531. DOI:10.1038/srep07531 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbriae) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this chapter have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics.