Article

Gene expression during the oocyte-to-embryo transition in mammals

The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
Molecular Reproduction and Development (Impact Factor: 2.68). 09/2009; 76(9):805-18. DOI: 10.1002/mrd.21038
Source: PubMed

ABSTRACT The seminal question in modern developmental biology is the origins of new life arising from the unification of sperm and egg. The roots of this question begin from 19th to 20th century embryologists studying fertilization and embryogenesis. Although the revolution of molecular biology has yielded significant insight into the complexity of this process, the overall orchestration of genes, molecules, and cells is still not fully formed. Early mammalian development, specifically the oocyte-to-embryo transition, is essentially under "maternal command" from factors deposited in the cytoplasm during oocyte growth, independent of de novo transcription from the nascent embryo. Many of the advances in understanding this developmental period occurred in tandem with application of new methods and techniques from molecular biology, from protein electrophoresis to sequencing and assemblies of whole genomes. From this bed of knowledge, it appears that precise control of mRNA translation is a key regulator coordinating the molecular and cellular events occurring during oocyte-to-embryo transition. Notably, oocyte transcriptomes share, yet retain some uniqueness, common genetic motifs among all chordates. The common genetic motifs typically define fundamental processes critical for cellular maintenance, whereas the unique genetic features may be a source of variation and a substrate for sexual selection, genetic drift, or gene flow. One purpose for this complex interplay among genes, proteins, and cells may allow for evolution to transform and act upon the underlying processes, at molecular, structural and organismal levels, to increase diversity, which is the ultimate goal of sexual reproduction.

Full-text

Available from: Alexei V Evsikov, Jun 13, 2015
0 Followers
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oocyte-to-embryo transition (OET) is thought to be mainly driven by post-transcriptional gene regulation. However, expression of both RNAs and proteins during the OET has not been comprehensively assayed. Furthermore, specific molecular mechanisms that regulate gene expression during OET are largely unknown. Here, we quantify and analyze transcriptome-wide, expression of mRNAs and thousands of proteins in Caenorhabditis elegans oocytes, 1-cell, and 2-cell embryos. This represents a first comprehensive gene expression atlas during the OET in animals. We discovered a first wave of degradation in which thousands of mRNAs are cleared shortly after fertilization. Sequence analysis revealed a statistically highly significant presence of a polyC motif in the 3' untranslated regions of most of these degraded mRNAs. Transgenic reporter assays demonstrated that this polyC motif is required and sufficient for mRNA degradation after fertilization. We show that orthologs of human polyC-binding protein specifically bind this motif. Our data suggest a mechanism in which the polyC motif and binding partners direct degradation of maternal mRNAs. Our data also indicate that endogenous siRNAs but not miRNAs promote mRNA clearance during the OET.
    The EMBO Journal 06/2014; DOI:10.15252/embj.201488769 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic development is a complex and dynamic process with frequent changes in gene expression, ultimately leading to cellular differentiation and commitment of various cell lines. These changes are likely preceded by changes to signaling cascades and/or alterations to the epigenetic program in specific cells. The process of epigenetic remodeling begins early in development. In fact, soon after the union of sperm and egg massive epigenetic changes occur across the paternal and maternal epigenetic landscape. The epigenome of these cells includes modifications to the DNA itself, in the form of DNA methylation, as well as nuclear protein content and modification, such as modifications to histones. Sperm chromatin is predominantly packaged by protamines, but following fertilization the sperm pronucleus undergoes remodeling in which maternally derived histones replace protamines, resulting in the relaxation of chromatin and ultimately decondensation of the paternal pronucleus. In addition, active DNA demethylation occurs across the paternal genome prior to the first cell division, effectively erasing many spermatogenesis derived methylation marks. This complex interplay begins the dynamic process by which two haploid cells unite to form a diploid organism. The biology of these events is central to the understanding of sexual reproduction, yet our knowledge regarding the mechanisms involved is extremely limited. This review will explore what is known regarding the post-fertilization epigenetic alterations of the paternal chromatin and the implications suggested by the available literature.
    Frontiers in Genetics 07/2012; 3:143. DOI:10.3389/fgene.2012.00143
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the maternal-to-zygotic transition (MZT), maternal proteins in oocytes are degraded by the ubiquitin-proteasome system (UPS), and new proteins are synthesized from the zygotic genome. However, the specific mechanisms underlying the UPS at the MZT are not well understood. We identified a molecule named zygote-specific proteasome assembly chaperone (ZPAC) that is specifically expressed in mouse gonads, and expression of ZPAC was transiently increased at the mouse MZT. ZPAC formed a complex with Ump1 and associated with precursor forms of 20S proteasomes. Transcription of ZPAC genes was also under the control of an autoregulatory feedback mechanism for the compensation of reduced proteasome activity similar to Ump1 and 20S proteasome subunit gene expression. Knockdown of ZPAC in early embryos caused a significant reduction of proteasome activity and decrease in Ump1 and mature proteasomes, leading to accumulation of proteins that need to be degraded at the MZT and early developmental arrest. Therefore, a unique proteasome assembly pathway mediated by ZPAC is important for progression of the mouse MZT.
    02/2013; 2(2):170-82. DOI:10.1242/bio.20123020

Similar Publications