Gene expression during the oocyte-to-embryo transition in mammals

The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
Molecular Reproduction and Development (Impact Factor: 2.68). 09/2009; 76(9):805-18. DOI: 10.1002/mrd.21038
Source: PubMed

ABSTRACT The seminal question in modern developmental biology is the origins of new life arising from the unification of sperm and egg. The roots of this question begin from 19th to 20th century embryologists studying fertilization and embryogenesis. Although the revolution of molecular biology has yielded significant insight into the complexity of this process, the overall orchestration of genes, molecules, and cells is still not fully formed. Early mammalian development, specifically the oocyte-to-embryo transition, is essentially under "maternal command" from factors deposited in the cytoplasm during oocyte growth, independent of de novo transcription from the nascent embryo. Many of the advances in understanding this developmental period occurred in tandem with application of new methods and techniques from molecular biology, from protein electrophoresis to sequencing and assemblies of whole genomes. From this bed of knowledge, it appears that precise control of mRNA translation is a key regulator coordinating the molecular and cellular events occurring during oocyte-to-embryo transition. Notably, oocyte transcriptomes share, yet retain some uniqueness, common genetic motifs among all chordates. The common genetic motifs typically define fundamental processes critical for cellular maintenance, whereas the unique genetic features may be a source of variation and a substrate for sexual selection, genetic drift, or gene flow. One purpose for this complex interplay among genes, proteins, and cells may allow for evolution to transform and act upon the underlying processes, at molecular, structural and organismal levels, to increase diversity, which is the ultimate goal of sexual reproduction.


Available from: Alexei V Evsikov, Jun 03, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oocyte-to-embryo transition (OET) is thought to be mainly driven by post-transcriptional gene regulation. However, expression of both RNAs and proteins during the OET has not been comprehensively assayed. Furthermore, specific molecular mechanisms that regulate gene expression during OET are largely unknown. Here, we quantify and analyze transcriptome-wide, expression of mRNAs and thousands of proteins in Caenorhabditis elegans oocytes, 1-cell, and 2-cell embryos. This represents a first comprehensive gene expression atlas during the OET in animals. We discovered a first wave of degradation in which thousands of mRNAs are cleared shortly after fertilization. Sequence analysis revealed a statistically highly significant presence of a polyC motif in the 3' untranslated regions of most of these degraded mRNAs. Transgenic reporter assays demonstrated that this polyC motif is required and sufficient for mRNA degradation after fertilization. We show that orthologs of human polyC-binding protein specifically bind this motif. Our data suggest a mechanism in which the polyC motif and binding partners direct degradation of maternal mRNAs. Our data also indicate that endogenous siRNAs but not miRNAs promote mRNA clearance during the OET.
    The EMBO Journal 06/2014; DOI:10.15252/embj.201488769 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The sub-cortical maternal complex (SCMC), located in the subcortex of mouse oocytes and preimplantation embryos, is composed of at least four proteins encoded by maternal effect genes: OOEP, NLRP5/MATER, TLE6 and KHDC3/FILIA. The SCMC assembles during oocyte growth and was seen to be essential for murine zygote progression beyond the first embryonic cell divisions; although roles in chromatin reprogramming and embryonic genome activation were hypothesized, the full range of functions of the complex in preimplantation development remains largely unknown.ResultsHere we report the expression of the SCMC genes in ovine oocytes and pre-implantation embryos, describing for the first time its expression in a large mammalian species.We report sheep-specific patterns of expression and a relationship with the oocyte developmental potential in terms of delayed degradation of maternal SCMC transcripts in pre-implantation embryos derived from developmentally incompetent oocytes.In addition, by determining OOEP full length cDNA by Rapid Amplification of cDNA Ends (RACE) we identified two different transcript variants (OOEP1 and OOEP2), both expressed in oocytes and early embryos, but with different somatic tissue distributions. In silico translation showed that 140 aminoacid peptide OOEP1 shares an identity with orthologous proteins ranging from 95% with the bovine to 45% with mouse. Conversely, OOEP2 contains a premature termination codon, thus representing an alternative noncoding transcript and supporting the existence of aberrant splicing during ovine oogenesis.Conclusions These findings confirm the existence of the SCMC in sheep and its key role for the oocyte developmental potential, deepening our understanding on the molecular differences underlying cytoplasmic vs nuclear maturation of the oocytes.Describing differences and overlaps in transcriptome composition between model organisms advance our comprehension of the diversity/uniformity between mammalian species during early embryonic development and provide information on genes that play important regulatory roles in fertility in nonmurine models, including the human.
    BMC Developmental Biology 11/2014; 14(1). DOI:10.1186/s12861-014-0040-y · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-transcriptional gene regulation (PTGR) of mRNA turnover, localization and translation is mediated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). These regulators exert their effects by binding to specific sequences within their target mRNAs. Increasing evidence suggests that competition for binding is a fundamental principle of PTGR. Not only can miRNAs be sequestered and neutralized by the targets with which they interact through a process termed 'sponging', but competition between binding sites on different RNAs may also lead to regulatory crosstalk between transcripts. Here, we quantitatively model competition effects under physiological conditions and review the role of endogenous sponges for PTGR in light of the key features that emerge.
    Nature Reviews Genetics 12/2014; 16(2). DOI:10.1038/nrg3853 · 39.79 Impact Factor