Article

A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation.

Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.
The Journal of clinical investigation (Impact Factor: 13.77). 05/2009; 119(5):1382-95. DOI: 10.1172/JCI37537
Source: PubMed

ABSTRACT Our aging society is confronted with a dramatic increase of patients suffering from tauopathies, which include Alzheimer disease and certain frontotemporal dementias. These disorders are characterized by typical neuropathological lesions including hyperphosphorylation and subsequent aggregation of TAU protein and neuronal cell death. Currently, no mechanism-based cures are available. We generated fluorescently labeled TAU transgenic zebrafish, which rapidly recapitulated key pathological features of tauopathies, including phosphorylation and conformational changes of human TAU protein, tangle formation, neuronal and behavioral disturbances, and cell death. Due to their optical transparency and small size, zebrafish larvae are well suited for both in vivo imaging and drug development. TAU-induced neuronal cell death was imaged by time-lapse microscopy in vivo. Furthermore, we used this zebrafish model to identify compounds targeting the TAU kinase glycogen synthase kinase 3beta (GSK3beta). We identified a newly developed highly active GSK3beta inhibitor, AR-534, by rational drug design. AR-534 reduced TAU phosphorylation in TAU transgenic zebrafish. This transgenic zebrafish model may become a valuable tool for further studies of the neuropathology of dementia.

0 Followers
 · 
299 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our ageing society is confronted with a dramatic increase in incidence of age-related neurodegenerative diseases; biomedical research leading to novel therapeutic strategies is crucial to address this problem. Animal models of neurodegenerative conditions are invaluable in improving our understanding of the molecular basis of pathology, potentially revealing novel targets for intervention. Here, we review transgenic animal models of Alzheimer’s and Parkinson’s disease reported in mice, zebrafish, Caenorhabditis elegans and Drosophila melanogaster. This information will enable researchers to compare different animal models targeting disease-associated molecules by genomic engineering and to facilitate the development of novel animal models for any particular study, depending on the ultimate research goals.
    Genes & genomics 08/2013; 35(4). DOI:10.1007/s13258-013-0116-2 · 0.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole exome sequencing and, to a lesser extent, genome-wide association studies, have provided unprecedented advances in identifying genes and candidate genomic regions involved in the development of human disease. Further progress will come from sequencing the entire genome of multiple patients and normal controls to evaluate overall mutational burden and disease risk. A major challenge will be the interpretation of the resulting data and distinguishing true pathogenic mutations from rare benign variants.While in model organisms such as the zebrafish,mutants are sought that disrupt the function of individual genes, human mutations that cause, or are associated with, the development of disease, are often not acting in a Mendelian fashion, are frequently of small effect size, are late onset, and may reside in noncoding parts of the genome. The zebrafish model is uniquely poised for understanding human coding- and noncoding variants because of its sequenced genome, a large body of knowledge on gene expression and function, rapid generation time, and easy access to embryos. A critical advantage is the ease of zebrafish transgenesis, both for the testing of human regulatory DNA driving expression of fluorescent reporter proteins, and the expression of mutated disease-associated human proteins in specific neurons to rapidly model aspects of neurological disorders. The zebrafish affords progress both through its model genome and it is rapidly developing transparent model vertebrate embryo.
    Developmental Neurobiology 03/2012; 72(3):415-28. DOI:10.1002/dneu.20888 · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.
    Human Genetics 12/2011; 131(4):535-63. DOI:10.1007/s00439-011-1119-1 · 4.52 Impact Factor

Similar Publications