Article

Genetic architecture of tameness in a rat model of animal domestication.

Department of Genetics and Pathology, Uppsala University, 75123 Uppsala, Sweden.
Genetics (Impact Factor: 4.87). 05/2009; 182(2):541-54. DOI: 10.1534/genetics.109.102186
Source: PubMed

ABSTRACT A common feature of domestic animals is tameness-i.e., they tolerate and are unafraid of human presence and handling. To gain insight into the genetic basis of tameness and aggression, we studied an intercross between two lines of rats (Rattus norvegicus) selected over >60 generations for increased tameness and increased aggression against humans, respectively. We measured 45 traits, including tameness and aggression, anxiety-related traits, organ weights, and levels of serum components in >700 rats from an intercross population. Using 201 genetic markers, we identified two significant quantitative trait loci (QTL) for tameness. These loci overlap with QTL for adrenal gland weight and for anxiety-related traits and are part of a five-locus epistatic network influencing tameness. An additional QTL influences the occurrence of white coat spots, but shows no significant effect on tameness. The loci described here are important starting points for finding the genes that cause tameness in these rats and potentially in domestic animals in general.

0 Followers
 · 
363 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pig domestication began around 9000 YBP in the Fertile Crescent and Far East, involving marked morphological and genetic changes that occurred in a relatively short window of time. Identifying the alleles that drove the behavioural and physiological transformation of wild boars into pigs through artificial selection constitutes a formidable challenge that can only be faced from an interdisciplinary perspective. Indeed, although basic facts regarding the demography of pig domestication and dispersal have been uncovered, the biological substrate of these processes remains enigmatic. Considerable hope has been placed on new approaches, based on next-generation sequencing, which allow whole-genome variation to be analyzed at the population level. In this review, we provide an outline of the current knowledge on pig domestication by considering both archaeological and genetic data. Moreover, we discuss several potential scenarios of genome evolution under the complex mixture of demography and selection forces at play during domestication. Finally, we highlight several technical and methodological approaches that may represent significant advances in resolving the conundrum of livestock domestication.Heredity advance online publication, 30 July 2014; doi:10.1038/hdy.2014.68.
    Heredity 07/2014; DOI:10.1038/hdy.2014.68 · 3.80 Impact Factor
  • Current Opinion in Neurobiology 09/2014; 28. DOI:10.1016/j.conb.2014.07.015 · 6.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Charles Darwin, while trying to devise a general theory of heredity from the observations of animal and plant breeders, discovered that domesticated mammals possess a distinctive and unusual suite of heritable traits not seen in their wild progenitors. Some of these traits also appear in domesticated birds and fish. The origin of Darwin's "domestication syndrome" has remained a conundrum for more than 140 years. Most explanations focus on particular traits, while neglecting others, or on the possible selective factors involved in domestication rather than the underlying developmental and genetic causes of these traits. Here, we propose that the domestication syndrome results predominantly from mild neural crest cell deficits during embryonic development. Most of the modified traits, both morphological and physiological, can be readily explained as direct consequences of such deficiencies, while other traits are explicable as indirect consequences. We first show how the hypothesis can account for the multiple, apparently unrelated traits of the syndrome and then explore its genetic dimensions and predictions, reviewing the available genetic evidence. The article concludes with a brief discussion of some genetic and developmental questions raised by the idea, along with specific predictions and experimental tests.
    Genetics 07/2014; 197(3):795-808. DOI:10.1534/genetics.114.165423 · 4.87 Impact Factor

Full-text (2 Sources)

Download
59 Downloads
Available from
May 20, 2014