Chronic exposure to fibrin and fibrinogen differentially regulates intracellular Ca2+ in human pulmonary arterial smooth muscle and endothelial cells.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.04). 04/2009; 296(6):L979-86. DOI: 10.1152/ajplung.90412.2008
Source: PubMed

ABSTRACT Acute pulmonary embolism occurs in more than half a million people a year in the United States. Chronic thromboembolic pulmonary hypertension (CTEPH) develops in approximately 4% of these patients due to unresolved thromboemboli. CTEPH is thus a relatively common, progressive, and potentially fatal disease. One currently proposed theory for the poor resolution advocates that modification of fibrinogen in CTEPH patients causes resistance of emboli to fibrinolysis. The current study investigated the regulation of cytosolic Ca(2+) ([Ca(2+)](cyt)), central to the control of cell migration, proliferation, and contraction, by chronic exposure of pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells to fibrinogen and fibrin. Basal [Ca(2+)](cyt) was substantially elevated in PAEC after culture on fibrinogen, fibrin, and thrombin and in PASMC on fibrinogen and fibrin. In PAEC, fibrinogen significantly decreased the peak [Ca(2+)](cyt) transient (P <0.001) without a change in the transient peak width (at 50% of the peak height). This response was independent of effects on the proteinase-activated receptor (PAR) 1. Furthermore, chronic exposure to thrombin, an activator of PAR, significantly reduced the peak agonist-induced Ca(2+) release in PAEC, but increased it in PASMC. The recovery rate of the agonist-induced [Ca(2+)](cyt) transients decelerated in PASMC chronically exposed to fibrin; a small increase of the peak Ca(2+) was also observed. Substantial augmentation of PASMC (but not PAEC) proliferation was observed in response to chronic fibrin exposure. In conclusion, chronic exposure to fibrinogen, fibrin, and thrombin caused differential changes in [Ca(2+)](cyt) in PAEC and PASMC. Such changes in [Ca(2+)](cyt) may contribute to vascular changes in patients who have CTEPH where the pulmonary vasculature is persistently exposed to thromboemboli.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic thromboembolic pulmonary hypertension (CTEPH) has been increasingly recognized as a common source of elevated pulmonary vascular resistance and pulmonary hypertension. It is clear that development of pulmonary thromboemboli is the inciting event for this process, yet it remains unclear why some patients have persistent pulmonary artery occlusion leading to distal pulmonary vascular remodeling and CTEPH. Thrombin, a serine protease, is an integral part of the common coagulation cascade, yet thrombin also has direct cellular effects through interaction with the family of PAR membrane receptors. This study is designed to determine the effects of thrombin on Akt signaling in pulmonary artery smooth muscle cells (PASMC) from normal humans and pulmonary hypertension patients. Thrombin treatment of PASMC resulted in a transient increase in Akt phosphorylation and had similar effects on the downstream targets of the Akt/mTOR pathway. Ca2+ is shown to be required for Akt phosphorylation as well as serum starvation, a distinct effect compared to platelet-derived growth factor. Thrombin treatment was associated with a rise in intracellular [Ca2+] and enhanced store-operated calcium entry (SOCE). These effects lead to enhanced proliferation, which is more dramatic in both IPAH and CTEPH PASMC. Enhanced proliferation is also shown to be attenuated by inhibition of Akt/mTOR in CTEPH PASMC. Thrombin has direct effects on PASMC increasing intracellular [Ca2+] and PASMC proliferation, an effect attributed to Akt phosphorylation. The current results implicate the effects of thrombin in the pathogenesis of idiopathic pulmonary arterial hypertension (IPAH) and CTEPH, which may potentially be a novel therapeutic target.
    12/2013; 1(7). DOI:10.1002/phy2.190
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibrinogen has a crucial role in both inflammation and coagulation, two processes pivotal for the pathogenesis of pulmonary hypertension. We therefore aimed to investigate whether fibrinogen plasma concentrations a) are elevated in pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) and b) may serve as a novel biomarker for haemodynamic impairment. In a dual-centre, retrospective analysis including 112 patients with PAH (n = 52), CTEPH (n = 49) and a control cohort of patients with suspected PAH ruled out by right heart catheterisation (n = 11), we found fibrinogen plasma concentrations to be increased in patients with PAH (4.1 ± 1.4 g/l) and CTEPH (4.3 ± 1.2 g/l) compared to control patients (3.4 ± 0.5 g/l, p = 0.0035 and p = 0.0004, respectively). In CTEPH patients but not in PAH patients fibrinogen was associated with haemodynamics (p < 0.036) and functional parameters (p < 0.041). Furthermore, fibrinogen was linked to disease severity (WHO functional class, p = 0.017) and independently predicted haemodynamic impairment specifically in CTEPH (p < 0.016). Therefore, fibrinogen seems to represent an important factor in CTEPH pathophysiology and may have the potential to guide clinical diagnosis and therapy.
    Scientific Reports 04/2014; 4:4808. DOI:10.1038/srep04808 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic thromboembolic pulmonary hypertension (CTEPH) is a life-threatening complication that affects a small but appreciable percentage of patients after acute pulmonary embolism. The cause of CTEPH is under investigation, but no single causative mechanism has yet been identified. CTEPH is likely a complication of residual thrombotic material in the pulmonary arteries that becomes transformed into intravascular scars. Pulmonary artery residua are relatively common after acute pulmonary embolism, and CTEPH may be an extreme manifestation of this phenomenon. Several intriguing observations have been made in patients with CTEPH that give insights into the mechanisms responsible for its formation. Two general pathways have been investigated: resistance of thromboemboli to lysis and attenuation of cellular processes involved in thrombus resolution. This review discusses the evidence supporting each pathway as a mechanism for CTEPH formation, as well as the interaction between the two. CTEPH may be due to a complex interaction between thrombotic/thrombolytic processes and angiogenic cellular remodeling of organized thrombi. The factors involved may, in fact, vary among CTEPH patients. An understanding of the interplay between the factors that cause CTEPH may help quantify the risk of its occurrence and provide insights into how it can be prevented.
    Current opinion in pulmonary medicine 09/2013; 19(5):422-9. DOI:10.1097/MCP.0b013e328364379f · 2.96 Impact Factor


Available from
May 30, 2014