T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma

Meakins-Christie Laboratories, McGill University, University of Montreal, Montreal, Quebec, Canada.
The Journal of allergy and clinical immunology (Impact Factor: 11.25). 05/2009; 123(5):1185-7. DOI: 10.1016/j.jaci.2009.02.024
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current advances in the knowledge of asthma pathobiology suggest that anticytokine therapies can be potentially useful for the treatment of this complex and heterogeneous airway disease. Recent evidence is accumulating in support of the efficacy of anti-IL-4, anti-IL-5, and anti-IL-13 drugs. Therefore, these new developments are now changing the global scenario of antiasthma therapies, especially with regard to more severe disease. Current findings referring to variability of individual therapeutic responses highlight that the different asthma subtypes need to be well characterized, in order to implement phenotype-targeted treatments which in the near future will hopefully be mainly based on cytokine-directed biologics.
    06/2013; 2013:104315. DOI:10.1155/2013/104315
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contrast, in healthy individuals, allergen-specific IgA and IgG4 molecules are found but no IgE, and their T cells fail to proliferate in response to allergens, probably because of the development of regulatory processes that actively suppress responses to allergens. The presence of allergen-specific secretory IgA has drawn little attention so far, although a few epidemiological studies point at a reverse association between IgA levels and the incidence of allergic airway disease. This review highlights the latest literature on the role of mucosal IgA in protection against allergic airway disease, the mechanisms described to induce secretory IgA, and the role of (mucosal) dendritic cells in this process. Finally, we discuss how this information can be used to translate into the development of new therapies for allergic diseases based on, or supplemented with, IgA boosting strategies.
    Clinical and Developmental Immunology 04/2013; 2013:542091. DOI:10.1155/2013/542091 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-cell intracellular antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1(-/-)) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1(-/-) mice also had higher levels of Df-specific IgE and IgG(1) in serum and ex vivo restimulated Tia-1(-/-) lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma.
    Immunology letters 04/2012; 146(1-2):8-14. DOI:10.1016/j.imlet.2012.04.001 · 2.37 Impact Factor