Article

Electroacupuncture modulates vlPAG release of GABA through presynaptic cannabinoid CB1 receptors.

Department of Medicine, University of California, Irvine, CA 92697, USA.
Journal of Applied Physiology (Impact Factor: 3.43). 05/2009; 106(6):1800-9. DOI: 10.1152/japplphysiol.91648.2008
Source: PubMed

ABSTRACT Previous studies have demonstrated that electroacupuncture (EA) attenuates sympathoexcitatory reflex responses by activating a long-loop pathway involving the hypothalamic arcuate nucleus (ARC), midbrain ventrolateral periaqueductal gray (vlPAG), and rostral ventrolateral medulla (rVLM). Neurons in the ARC provide excitatory input to the vlPAG, whereas the vlPAG inhibits neuronal activity in the rVLM. gamma-Aminobutyric acid (GABA) and glutamate (Glu) have been identified in the vlPAG. Endocannabinoids (ECs), acting as atypical neurotransmitters, inhibit the release of both neurotransmitters in the hypothalamus and midbrain through a presynaptic cannabinoid type 1 (CB(1)) receptor mechanism. The EC system has been observed in the dorsal but not in the vlPAG. Since it is uncertain whether ECs influence GABA and Glu in the vlPAG, the present study tested the hypothesis that EA modulates the release of these neurotransmitters in the vlPAG through a presynaptic CB(1) receptor mechanism. We measured the release of GABA and Glu simultaneously by using HPLC to assess samples collected with microdialysis probes inserted unilaterally into the vlPAG of intact anesthetized rats. Twenty-eight min of EA (2 Hz, 2-4 mA, 0.5 ms) at the P5-6 acupoints reduced the release of GABA by 39% during EA and by 44% 15 min after EA. Thirty-five minutes after EA, GABA concentrations returned to pre-EA levels. In contrast, sham EA did not change the vlPAG GABA concentration. Blockade of CB(1) receptors with AM251, a selective CB(1) receptor antagonist, reversed the EA-modulated changes in GABA concentration, whereas microinjection of vehicle into the vlPAG did not alter EA-modulated GABA changes. In addition, we observed no changes in the vlPAG Glu concentrations during EA, although the baseline concentration of Glu was much higher than that of GABA (3,541 +/- 373 vs. 33.8 +/- 8.7 nM, Glu vs. GABA). These results suggest that EA modulates the sympathoexcitatory reflex responses by decreasing the release of GABA, but not Glu, in the vlPAG, most likely through a presynaptic CB(1) receptor mechanism.

0 Bookmarks
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last several decades, there has been an explosion of articles on acupuncture, including studies that have begun to explore mechanisms underlying its analgesic and cardiovascular actions. Modulation of cardiovascular function is most effective during manual and low-frequency, low-intensity electroacupuncture (EA) at a select set of acupoints situated along meridians located over deep somatic nerves on the upper and lower extremities. Stimulation at these acupoints activates underlying sensory neural pathways that project to a number of regions in the central nervous system (CNS) that ultimately regulate autonomic outflow and hence cardiovascular function. A long-loop pathway involving the hypothalamus, midbrain, and medulla underlies EA modulation of reflex increases in blood pressure (BP). Actions of excitatory and inhibitory neurotransmitters in the supraspinal CNS underlie processing of the somatic input and adjustment of autonomic outflow during EA. Acupuncture also decreases elevated blood pressure through actions in the thoracic spinal cord. Reflexes that lower BP likewise are modulated by EA through its actions on sympathetic and parasympathetic nuclei in the medulla. The autonomic influence of acupuncture is slow in onset but prolonged in duration, typically lasting beyond the period of stimulation. Clinical studies suggest that acupuncture can be used to treat cardiac diseases, such as myocardial ischemia and hypertension, associated with overactivity of the sympathetic nervous system.
    Medical Acupuncture 04/2013; 25(2):101-113.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The "classic" endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system-ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances-alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
    PLoS ONE 03/2014; 9(3):e89566. · 3.53 Impact Factor
  • Source
    International Journal of Morphology 03/2013; 31(1):82-86. · 0.20 Impact Factor