Confining light to deep subwavelength dimensions to enable optical nanopatterning.

Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Science (Impact Factor: 31.48). 05/2009; 324(5929):917-21. DOI: 10.1126/science.1167704
Source: PubMed

ABSTRACT In the past, the formation of microscale patterns in the far field by light has been diffractively limited in resolution to roughly half the wavelength of the radiation used. Here, we demonstrate lines with an average width of 36 nanometers (nm), about one-tenth the illuminating wavelength lambda1 = 325 nm, made by applying a film of thermally stable photochromic molecules above the photoresist. Simultaneous irradiation of a second wavelength, lambda2 = 633 nm, renders the film opaque to the writing beam except at nodal sites, which let through a spatially constrained segment of incident lambda1 light, allowing subdiffractional patterning. The same experiment also demonstrates a patterning of periodic lines whose widths are about one-tenth their period, which is far smaller than what has been thought to be lithographically possible.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photoinhibited superressolution (PInSR) lithography is a two--color, one-photon scheme that promises high throughput far-field patterning t deep subwwabvelength scales. Previous work ha shown that the technique susceptible to blurring from active species diffusion, an issue which we have recently overcome with the use of a low-diffiusivity methrylate resist. Here we present out first clear demonstration of superresolution, showing feature spacing 3X better than the 0.2 NA diffraction limit.
    SPIE Advanced Lithography; 03/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Temperature dependencies of cyclization and cycloreversion processes of a photochromic diarylethene derivative, 1,2-bis(2-methyl-3-benzothienyl)perfluorocyclopentene (BT), were investigated by steady-state spectroscopy and femtosecond laser photolysis methods. Steady-state measurements revealed that the cyclization reaction quantum yield and the fraction of the conformer with C2v symmetry favorable for the cyclization (antiparallel, AP conformer) were independent of temperature in the range of 253–343 K. These results indicated that the cyclization reaction of the AP conformer in the open-ring isomer in the excited state had no apparent temperature dependence and suggested that the fate of the excited AP conformer in the open-ring isomer, such as cyclization or deactivation to the ground state, was determined at the conical intersection. On the other hand, the cycloreversion reaction was dependent on the temperature; the reaction quantum yield increased together with a decrease in the lifetime of the excited state of the closed-ring isomer with increasing temperature. On the basis of the adiabatic energy surface for the reaction profiles, it was deduced that the rapid deactivation into the ground state took place in the S1 state in competition with the activated pathways leading to the conical intersection where the cycloreversion occurred.
    The Journal of Physical Chemistry C 02/2012; 116(7):4862–4869. · 4.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a large-scale quantum computer, the cost of communications will dominate the performance and resource requirements, place many severe demands on the technology, and constrain the architecture. Unfortunately, fault-tolerant computers based entirely on photons with probabilistic gates, though equipped with "built-in" communication, have very large resource overheads; likewise, computers with reliable probabilistic gates between photons or quantum memories may lack sufficient communication resources in the presence of realistic optical losses. Here, we consider a compromise architecture, in which semiconductor spin qubits are coupled by bright laser pulses through nanophotonic waveguides and cavities using a combination of frequent probabilistic and sparse determinstic entanglement mechanisms. The large photonic resource requirements incurred by the use of probabilistic gates for quantum communication are mitigated in part by the potential high-speed operation of the semiconductor nanophotonic hardware. The system employs topological cluster-state quantum error correction for achieving fault-tolerance. Our results suggest that such an architecture/technology combination has the potential to scale to a system capable of attacking classically intractable computational problems.
    International Journal of Quantum Information 11/2011; 08(01n02). · 0.99 Impact Factor

Full-text (2 Sources)

Available from
Sep 15, 2014