Regulation of epithelial sodium channels by cGMP/PKGII.

Departments of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
The Journal of Physiology (Impact Factor: 4.54). 05/2009; 587(Pt 11):2663-76. DOI: 10.1113/jphysiol.2009.170324
Source: PubMed

ABSTRACT Airway and alveolar fluid clearance is mainly governed by vectorial salt movement via apically located rate-limiting Na(+) channels (ENaC) and basolateral Na(+)/K(+)-ATPases. ENaC is regulated by a spectrum of protein kinases, i.e. protein kinase A (PKA), C (PKC), and G (PKG). However, the molecular mechanisms for the regulation of ENaC by cGMP/PKG remain to be elucidated. In the present study, we studied the pharmacological responses of native epithelial Na(+) channels in human Clara cells and human alphabetagammadelta ENaCs expressed in oocytes to cGMP. 8-pCPT-cGMP increased amiloride-sensitive short-circuit current (I(sc)) across H441 monolayers and heterologously expressed alphabetagammadelta ENaC activity in a dose-dependent manner. Similarly, 8-pCPT-cGMP (a PKGII activator) but not 8-Br-cGMP (a PKGI activator) increased amiloride-sensitive whole cell currents in H441 cells in the presence of CFTRinh-172 and diltiazem. In all cases, the cGMP-activated Na(+) channel activity was inhibited by Rp-8-pCPT-cGMP, a specific PKGII inhibitor. This was substantiated by the evidence that PKGII was the sole isoform expressed in H441 cells at the protein level. Importantly, intratracheal instillation of 8-pCPT-cGMP in BALB/c mice increased amiloride-sensitive alveolar fluid clearance by approximately 30%, consistent with the in vitro results. We therefore conclude that PKGII is an activator of lung epithelial Na(+) channels, which may expedite the resolution of oedematous fluid in alveolar sacs.

Download full-text


Available from: Hong-Long Ji, Feb 17, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 has been described as an important entry and exit site for water during formation of brain edema and regulation of AQP4 is therefore of therapeutic interest. Phosphorylation of some aquaporins has been proposed to regulate their water permeability via gating of the channel itself. Protein kinase (PK)-dependent phosphorylation of Ser(111) has been reported to increase the water permeability of AQP4 expressed in an astrocytic cell line. This possibility was, however, questioned based on the crystal structure of the human AQP4. Our study aimed to resolve if Ser(111) was indeed a site involved in phosphorylation-mediated gating of AQP4. The water permeability of AQP4-expressing Xenopus oocytes was not altered by a range of activators and inhibitors of PKG and PKA. Mutation of Ser(111) to alanine or aspartate (to prevent or mimic phosphorylation) did not change the water permeability of AQP4. PKG activation had no effect on the water permeability of AQP4 in primary cultures of rat astrocytes. Molecular dynamics simulations of a phosphorylation of AQP4.Ser(111) recorded no phosphorylation-induced change in water permeability. A phospho-specific antibody, exclusively recognizing AQP4 when phosphorylated on Ser(111) , failed to detect phosphorylation in cell lysate of rat brain stimulated by conditions proposed to induce phosphorylation of this residue. Thus, our data indicate a lack of phosphorylation of Ser(111) and of phosphorylation-dependent gating of AQP4.
    Glia 07/2013; 61(7). DOI:10.1002/glia.22498 · 6.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.
    01/2011; 2011:830320. DOI:10.1155/2011/830320
  • [Show abstract] [Hide abstract]
    ABSTRACT: form only given. The author has studied an asynchronous version of the Bellman-Ford algorithm for computing the shortest distances from all nodes in a network to a fixed destination. It is known that this algorithm has (in the worst case) exponential (in the size of the underlying graph) communication complexity. The author has obtained results indicating that its expected (in a probabilistic sense) communication complexity is actually polynomial, under some reasonable probabilistic assumptions. He has shown that a recently introduced method for asynchronous simulation with rollback contains the Bellman-Ford algorithm as a special case, and he has deduced that the rollback method also has exponential communication complexity. The author has also investigated whether (under certain probabilistic assumptions and/or modifications of the simulation algorithm) the communication complexity becomes polynomial
    Decision and Control, 1988., Proceedings of the 27th IEEE Conference on; 01/1988