Article

Childhood Adversity Is Associated with Left Basal Ganglia Dysfunction During Reward Anticipation in Adulthood

Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA.
Biological psychiatry (Impact Factor: 9.47). 05/2009; 66(3):206-13. DOI: 10.1016/j.biopsych.2009.02.019
Source: PubMed

ABSTRACT Childhood adversity increases the risk of psychopathology, but the neurobiological mechanisms underlying this vulnerability are not well-understood. In animal models, early adversity is associated with dysfunction in basal ganglia regions involved in reward processing, but this relationship has not been established in humans.
Functional magnetic resonance imaging was used to examine basal ganglia responses to: 1) cues signaling possible monetary rewards and losses; and 2) delivery of monetary gains and penalties, in 13 young adults who experienced maltreatment before age 14 years and 31 nonmaltreated control subjects.
Relative to control subjects, individuals exposed to childhood adversity reported elevated symptoms of anhedonia and depression, rated reward cues less positively, and displayed a weaker response to reward cues in the left globus pallidus. There were no group differences in right hemisphere basal ganglia response to reward cues or in basal ganglia response to loss cues, no-incentive cues, gains, or penalties.
Results indicate that childhood adversity in humans is associated with blunted subjective responses to reward-predicting cues as well as dysfunction in left basal ganglia regions implicated in reward-related learning and motivation. This dysfunction might serve as a diathesis that contributes to the multiple negative outcomes and psychopathologies associated with childhood adversity. The findings suggest that interventions that target motivation and goal-directed action might be useful for reducing the negative consequences of childhood adversity.

Download full-text

Full-text

Available from: Karlen Lyons-Ruth, Jul 01, 2015
1 Follower
 · 
190 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first half of this paper briefly reviews the evidence that (i) stress precipitates depression by damaging the hippocampus, leading to changes in the activity of a distributed neural system involving, inter alia, the amygdala, the ventromedial and dorsolateral prefrontal cortex, the lateral habenula and ascending monoamine pathways, and (ii) antidepressants work by repairing the damaged hippocampus, thus restoring the normal balance of activity within that circuitry. In the second half of the paper we review the evidence that heightened vulnerability to depression, either because of a clinical history of depression or because of the presence of genetic, personality or developmental risk factors, also confers resistance to antidepressant drug treatment. Thus, although antidepressants provide an efficient means of reversing the neurotoxic effects of stress, they are much less effective in conditions where vulnerability to depression is elevated and the role of stress in precipitating depression is correspondingly lower. Consequently, the issue of vulnerability should feature much more prominently in antidepressant research. Most of the current animal models of depression are based on the induction of a depressive-like phenotype by stress, and pay scant attention to vulnerability. As antidepressants are relatively ineffective in vulnerable individuals, this in turn implies a need for the development of different clinical and preclinical methodologies, and a shift of focus away from the current preoccupation with the hippocampus as a target for antidepressant action in vulnerable patients.
    Behavioural Pharmacology 09/2014; 25(5 and 6):352-371. DOI:10.1097/FBP.0000000000000066 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in rodents and humans has shown divergent effects of the glucocorticoids corticosterone and cortisol (CRT) on reward processing. In rodents, administration of CRT increases reward drive by facilitating dopamine release in the ventral striatum. In humans, correspondingly, risky decision-making increases when CRT levels are elevated. Human stress studies contrariwise show that elevated CRT is accompanied by a decrease in reward-related brain activity. There are however no direct insights into how CRT acts on the reward system in the human brain. Accordingly, we used pharmacological functional magnetic resonance imaging (pharmaco-fMRI) to investigate the effects of CRT on the brain's reward system. In a randomized within-subject design we administered a high dose of CRT (40 mg) and placebo to twenty healthy male volunteers on separate days, and used a monetary incentive delay task to assess the effects of the hormone on the striatum and the amygdala in anticipation of potential reward. In contrast to animal studies, we show that this high dose of CRT strongly decreases activity of the striatum in both reward and non-reward conditions. Furthermore, we observed reductions in activity in the basolateral amygdala, a key regulator of the brain's reward system. Crucially, the overall down-regulation of the brain's reward circuit was verified on the subjective level as subjects reported significantly reduced reward preference after CRT. In sum, we provide here direct evidence in humans that CRT acts on brain regions involved in reward-related behavior, that is, the basolateral amygdala and the striatum. Our findings suggest that CRT in the quantity and time course presently globally down-regulates the reward system, and thereby decreases motivational processing in general.
    Psychoneuroendocrinology 09/2014; 47. DOI:10.1016/j.psyneuen.2014.04.022 · 5.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression and cigarette smoking co-occur at high rates. However, the etiological mechanisms that contribute to this relationship remain unclear. Anhedonia and associated impairments in reward learning are key features of depression, which also have been linked to the onset and maintenance of cigarette smoking. However, few studies have investigated differences in anhedonia and reward learning among depressed smokers and depressed nonsmokers. The goal of this study was to examine putative differences in anhedonia and reward learning in depressed smokers (n = 36) and depressed nonsmokers (n = 44). To this end, participants completed self-report measures of anhedonia and behavioral activation (BAS reward responsiveness scores) and as well as a probabilistic reward task rooted in signal detection theory, which measures reward learning (Pizzagalli, Jahn, & O'Shea, 2005). When considering self-report measures, depressed smokers reported higher trait anhedonia and reduced BAS reward responsiveness scores compared to depressed nonsmokers. In contrast to self-report measures, nicotine-satiated depressed smokers demonstrated greater acquisition of reward-based learning compared to depressed nonsmokers as indexed by the probabilistic reward task. Findings may point to a potential mechanism underlying the frequent co-occurrence of smoking and depression. These results highlight the importance of continued investigation of the role of anhedonia and reward system functioning in the co-occurrence of depression and nicotine abuse. Results also may support the use of treatments targeting reward learning (e.g., behavioral activation) to enhance smoking cessation among individuals with depression.
    Behavior Therapy 09/2014; DOI:10.1016/j.beth.2014.02.004 · 2.43 Impact Factor