In vitro antagonistic activities of Lactobacillus spp. against Brachyspira hyodysenteriae and Brachyspira pilosicoli

Unité de recherche des Microorganismes d'Intérêt Laitier et Alimentaire, IFR 146 ICORE, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen, France.
Veterinary Microbiology (Impact Factor: 2.73). 04/2009; 138(1-2):184-90. DOI: 10.1016/j.vetmic.2009.03.020
Source: PubMed

ABSTRACT The sensitivity of Brachyspira hyodysenteriae and Brachyspira pilosicoli, respectively the causative agents of Swine Dysentery and Porcine Intestinal Spirochaetosis to two probiotic Lactobacillus strains, L. rhamnosus CNCM-I-3698 and L. farciminis CNCM-I-3699 was studied through viability, motility and coaggregation assays. The cell-free supernatant of these lactobacilli contains lactic acid, that is stressful for Brachyspira (leading to the formation of spherical bodies), and lethal. It was demonstrated for the first time the in vitro coaggregation properties of two probiotic Lactobacillus strains (active or heat-treated) with two pathogenic strains of Brachyspira, leading to (1) trapping of spirochaetal cells in a physical network as demonstrated by SEM; (2) inhibition of the motility of Brachyspira. Such in vitro studies should encourage in vivo studies in animal model to evaluate the potential of the use of probiotic lactobacilli through a feeding strategy for the prevention of B. hyodysenteriae and B. pilosicoli.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The fastidious, anaerobic spirochaete Brachyspira is capable of causing enteric disease in avian, porcine and human hosts, amongst others, with a potential for zoonotic transmission. Avian intestinal spirochaetosis (AIS), the resulting disease from colonisation of the caeca and colon of poultry by Brachyspira leads to production losses, with an estimated annual cost of circa £18 million to the commercial layer industry in the United Kingdom. Of seven known and several proposed species of Brachyspira, three are currently considered pathogenic to poultry; B. alvinipulli, B. intermedia and B. pilosicoli. Currently, AIS is primarily prevented by strict biosecurity controls and is treated using antimicrobials, including tiamulin. Other treatment strategies have been explored, including vaccination and probiotics, but such developments have been hindered by a limited understanding of the pathobiology of Brachyspira. A lack of knowledge of the metabolic capabilities and little genomic information for Brachyspira has resulted in a limited understanding of the pathobiology. In addition to an emergence of antibiotic resistance amongst Brachyspira, bans on the prophylactic use of antimicrobials in livestock are driving an urgent requirement for alternative treatment strategies for Brachyspira-related diseases, such as AIS. Advances in the molecular biology and genomics of Brachyspira heralds the potential for the development of tools for genetic manipulation to gain an improved understanding of the pathogenesis of Brachyspira.
    Veterinary Microbiology 11/2013; 168(2-4). DOI:10.1016/j.vetmic.2013.11.019 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Swine Dysentery (SD) is a severe mucohaemorhagic enteric disease of pigs caused by Brachyspira hyodysenteriae, which has a large impact on pig production and causes important losses due to mortality and sub-optimal performance. Although B. hyodysenteriae has been traditionally considered a pathogen mainly transmitted by direct contact, through the introduction of subclinically infected animals into a previously uninfected herd, recent findings position B. hyodysenteriae as a potential threat for indirect transmission between farms. This article summarizes the knowledge available on the etiological agent of SD and its virulence traits, and reviews the determinants of SD transmission. The between-herds and within-herd transmission routes are addressed. The factors affecting disease transmission are thoroughly discussed, i.e., environmental survival of the pathogen, husbandry factors (production system, production stage, farm management), role of vectors, diet influence and interaction of the microorganism with gut microbiota. Finally, prophylactic and therapeutic approaches to fight against the disease are briefly described.
    International Journal of Environmental Research and Public Health 05/2013; 10(5):1927-47. DOI:10.3390/ijerph10051927 · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study focused on a pleomorphic strain Lactobacillus farciminis CNCM I-3699 known as probiotic for animal applications. On plating, this strain was characterized by the presence of rough and smooth morphotypes depending on experimental conditions. Dominant smooth (S) form, bright white, having smooth edges with moist, ropy, and creamy along with rough (R) form, pale white, having irregular edges and a dry and granular aspect were always obtained from the parent strain under aerobic culture conditions. In anaerobic conditions, only S form growth was observed. Biochemical dosage of capsular exopolysaccharides showed a significant difference between S and R forms (p < 0.01), in agreement with a ropy or non ropy phenotype for the S or R form, respectively. These differences were confirmed by transmission electronic microscopy. The auto-aggregation profile revealed major differences in cultural behaviors. The R morphotype presented a highly auto-aggregative ability contrary to the S morphotype. However, biochemical and molecular analyses revealed that Rand S morphotypes: 1) shared the same sugar fermentation pattern; 2) belonged to L. farciminis species using 16S rDNA sequencing; 3) had identical PFGE patterns using NotI and ApaI endonudeases; and 4) had identical CRISPR loci but different from those of other L. farciminis strains. Furthermore, the novelty and uniqueness of CRISPR spacer sequences in CNCM I-3699 provides a genetic support for the development of a molecular tracking tool for CNCM I-3699 and its variants. In conclusion, L. farciminis CNCM 1-3699 is a pleomorphic strain giving reproducibly rise to two phenotypically distinct morphotypes R and S. This phenomenon may explain survival and growth abilities in in vitro fluctuating aerobic anaerobic conditions along with modulation of exopolysaccharide synthesis and autoaggregation profile.
    International Journal of Food Microbiology 01/2015; 193. DOI:10.1016/j.ijfoodmicro.2014.08.036 · 3.16 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014