Sip size of orangeade: effects on intake and sensory-specific satiation

Wageningen University, The Netherlands.
The British journal of nutrition (Impact Factor: 3.34). 05/2009; 102(7):1091-7. DOI: 10.1017/S000711450932574X
Source: PubMed

ABSTRACT Sensory-specific satiation (SSS) drives food selection and contributes to meal termination. We hypothesised that smaller sips would increase SSS due to increased oro-sensory exposure, irrespective of energy content. The objective was to determine the effects of sip size and energy content on ad libitum intake of orangeade and subjective SSS for orangeade. Orangeade intake and ratings of wanting and liking were measured before and after ad libitum orangeade consumption in a 2 x 2 cross-over design (n 53). Conditions differed in energy content (no-energy v. regular-energy orangeade) and in sip size (large, 20 g/sip v. small, 5 g/sip). The mean intake of both orangeades was lower when consumed with small sips than when consumed with large sips (regular-energy, 352 v. 493 g; no-energy, 338 v. 405 g; both P < 0.001). When consumed with large sips, the mean intake of no-energy orangeade was lower than that of regular-energy orangeade (P = 0.02). When consumed with small sips, subjective SSS (based on the desire to drink) was higher for no-energy orangeade than for regular-energy orangeade (P = 0.01), while mean intake was comparable. We concluded that smaller sip size, i.e. increased oro-sensory exposure per unit of consumption, can lower intake of sweet drinks. Only with low oro-sensory exposure (large sip size) was intake higher for an energy-containing sweet drink than for a no-energy sweet drink. This suggests that intake of sweet drinks is stimulated by (metabolic) reward value and inhibited by sensory satiation. This underpins the importance of SSS for meal termination.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between oral and gastric signals is an important part of food intake regulation. Previous studies suggest that bypassing oral stimulation diminishes the suppression of hunger and increases gastric emptying rate. However, the role of appetite hormones, like cholecystokinin-8 and ghrelin, in this process is still unclear. Our objective was to determine the contributions of gastric and oral stimulation to subsequent appetite and hormone responses and their effect on ad libitum intake. Fourteen healthy male subjects (age 24.6±3.8y, BMI 22.3±1.6kg/m(2)) completed a randomized, single-blinded, cross-over experiment with 3 treatment-sessions: 1) Stomach distention: naso-gastric infusion of 500mL/0kJ water, 2) Stomach distention with caloric content: naso-gastric infusion of 500mL/1770kJ chocolate milk, and 3) Stomach distention with caloric content and oral exposure: oral administration of 500mL/1770kJ chocolate milk. Changes in appetite ratings and plasma glucose, insulin, cholecystokinin-8, and active and total ghrelin concentrations were measured at fixed time-points up to 30min after infusion or oral administration. Subsequently, subjects consumed an ad libitum buffet meal. Oral administration reduced appetite ratings more than both naso-gastric infusions (P<0.0001). Gastric infusion of a caloric load increased insulin and cholecystokinin-8 and decreased total ghrelin concentrations more than ingestion (all P<0.0001). No differences in active ghrelin response were observed between conditions. Ad libitum intake did not differ between oral and gastric administration of chocolate milk (P>0.05). Thus, gastric infusion of nutrients induces greater appetite hormone responses than ingestion does. These data provide novel and additional evidence that bypassing oral stimulation not only affects the appetite profile but also increases anorexigenic hormone responses, probably driven in part by faster gastric emptying. This confirms the idea that learned associations between sensory characteristics and associated metabolic consequences serve to adapt hormone responses to nutrient content. These findings underscore the importance of oral stimulation in the regulation of food intake.
    Physiology & Behavior 07/2014; 137. DOI:10.1016/j.physbeh.2014.06.021 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sensory properties of foods promote and guide consumption in hunger states, whereas satiation should dampen the sensory activation of ingestive behaviors. Such activation may be disordered in obese individuals. Using functional magnetic resonance imaging (fMRI), we studied regional brain responses to food odor stimulation in the sated state in obese and normal-weight individuals targeting ventral frontal regions known to be involved in coding for stimulus reward value. Forty-eight women (25 normal weight; 23 obese) participated in a 2-day (fed compared with fasting) fMRI study while smelling odors of 2 foods and an inedible, nonfood object. Analyses were conducted to permit an examination of both general and sensory-specific satiation (satiation effects specific to a given food). Normal-weight subjects showed significant blood oxygen level dependent responses in the ventromedial prefrontal cortex (vmPFC) to food aromas compared with responses induced by the odor of an inedible object. Normal-weight subjects also showed general (but not sensory-specific) satiation effects in both the vmPFC and orbitofrontal cortex. Obese subjects showed no differential response to the aromas of food and the inedible object when fasting. Within- and between-group differences in satiation were driven largely by changes in the response to the odor of the inedible stimulus. Responses to food aromas in the obese correlated with trait negative urgency, the tendency toward negative affect-provoked impulsivity. Ventral frontal signaling of reward value may be disordered in obesity, with negative urgency heightening responses to food aromas. The observed nature of responses to food and nonfood stimuli suggests that future research should independently quantify each to fully understand brain reward signaling in obesity. This trial was registered at as NCT02041039.
    American Journal of Clinical Nutrition 04/2014; 99(6). DOI:10.3945/ajcn.113.080788 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reductions in eating rate are recommended to prevent and treat obesity; yet, the relation between eating rate and energy intake has not been systematically reviewed, with studies producing mixed results.OBJECTIVE: Our main objective was to examine how experimentally manipulated differences in eating rate influence concurrent energy intake and subjective hunger ratings.DESIGN: : We systematically reviewed studies that experimentally manipulated eating rate and measured concurrent food intake, self-reported hunger, or both. We combined effect estimates from studies by using inverse variance meta-analysis, calculating the standardized mean difference (SMD) in food intake between fast and slow eating rate conditions.RESULTS: Twenty-two studies were eligible for inclusion. Evidence indicated that a slower eating rate was associated with lower energy intake in comparison to a faster eating rate (random-effects SMD: 0.45; 95% CI: 0.25, 0.65; P < 0.0001). Subgroup analysis indicated that the effect was consistent regardless of the type of manipulation used to alter eating rate, although there was a large amount of heterogeneity between studies. There was no significant relation between eating rate and hunger at the end of the meal or up to 3.5 h later.CONCLUSIONS: Evidence to date supports the notion that eating rate affects energy intake. Research is needed to identify effective interventions to reduce eating rate that can be adopted in everyday life to help limit excess consumption.
    American Journal of Clinical Nutrition 05/2014; 100(1). DOI:10.3945/ajcn.113.081745 · 6.92 Impact Factor