Article

Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study.

The Mind Research Network, Albuquerque, New Mexico 7131, USA.
Journal of neurotrauma (Impact Factor: 3.97). 05/2009; 26(10):1635-43. DOI: 10.1089/neu.2009-0896
Source: PubMed

ABSTRACT Single-voxel proton magnetic resonance imaging ((1)H-MRS) and proton MR spectroscopic imaging ((1)H-MRSI) were used to compare brain metabolite levels in semi-acute mild traumatic brain injury (mTBI) patients (n = 10) and matched healthy controls (n = 9). The (1)H-MRS voxel was positioned in the splenium, a region known to be susceptible to axonal injury in TBI, and a single (1)H-MRSI slice was positioned above the lateral ventricles. To increase sensitivity to the glutamate (Glu) and the combined glutamate-glutamine (Glx) signal, an inter-pulse echo time shown to emphasize the major Glu signals was used along with an analysis method that reduces partial volume errors by using water as a concentration standard. Our preliminary findings indicate significantly lower levels of gray matter Glx and higher levels of white matter creatine-phosphocreatine (Cr) in mTBI subjects relative to healthy controls. Furthermore, Cr levels were predictive of executive function and emotional distress in the combined groups. These results suggest that perturbations in Cr, a critical component of the brain's energy metabolism, and Glu, the brain's major neurotransmitter, may occur following mTBI. Moreover, the different pattern of results for gray and white matter suggests tissue-specific metabolic responses to mTBI.

Download full-text

Full-text

Available from: Robert Elgie, Jun 19, 2015
0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is characterized by loss of brain volume, which may represent an ongoing pathophysiological process. This loss of brain volume may be explained by reduced neuropil rather than neuronal loss, suggesting abnormal synaptic plasticity and cortical microcircuitry. A possible mechanism is hypofunction of the NMDA-type of glutamate receptor, which reduces the excitation of inhibitory GABAergic interneurons, resulting in a disinhibition of glutamatergic pyramidal neurons. Disinhibition of pyramidal cells may result in excessive stimulation by glutamate, which in turn could cause neuronal damage or death through excitotoxicity. In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.
    Schizophrenia Research 04/2014; 6. DOI:10.1016/S0920-9964(14)70179-3 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This pilot study explores the metabolic changes associated with persistent postconcussion syndrome (PCS) after mild traumatic brain injury (mTBI; >12 months after injury) using magnetic resonance spectroscopy. We hypothesized that those mTBI participants with PCS will have larger metabolic differences than those without. Data were collected from mTBI participants with PCS, mTBI participants without PCS and non-head-injured participants (all groups: n=8). Magnetic resonance spectroscopy metabolite profiles within the dorsolateral prefrontal cortex showed a reduced creatine/choline ratio in mTBI patients compared with control participants. This data provides initial evidence for residual metabolic changes in chronic mTBI patients, but there was no conclusive relationship between these metabolic changes and PCS symptom report. Creatine is involved in maintaining energy levels in cells with high or fluctuating energy demand, suggesting that there may be some residual energy impairment in chronic mTBI.
    Neuroreport 06/2013; 24(12). DOI:10.1097/WNR.0b013e3283637aa4 · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic, heavy alcohol consumption may affect the concentration of neurometabolites assessed with proton magnetic resonance spectroscopy ((1)H-MRS). We investigated the largest sample reported to date (N=213) with the primary goal of determining how specific clinical features impact neurometabolite concentrations in an anterior cingulate gray matter voxel. This community dwelling sample included both treatment seeking and non-treatment seeking individuals. A healthy control group (N=66) was matched for age and education. In multivariate analyses predicting neurometabolite concentrations, the heavy drinking group had greater concentrations overall. An age by group interaction was noted, as group difference across neurometabolites increased with age. More years drinking, but not more drinks per drinking day (DPDD), predicted greater concentrations of choline-containing compounds (Cho), creatine-phosphocreatine (Cre), glutamate-glutamine (Glx), and n-acetyl-aspartate (NAA). The effects of other clinical variables (depression, cigarette smoking, marijuana use) were negligible. After controlling for DPDD and years drinking, treatment-seeking status had no impact on neurometabolites. In the very oldest portion of the sample (mean age=50), however, a negative relationship was seen between NAA and years drinking. These results suggest that the nature of neurometabolite abnormalities in chronic heavy drinkers may vary as a function of duration of abuse.
    11/2012; 211(2). DOI:10.1016/j.pscychresns.2012.05.005