Article

Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study.

The Mind Research Network, Albuquerque, New Mexico 7131, USA.
Journal of neurotrauma (Impact Factor: 4.25). 05/2009; 26(10):1635-43. DOI: 10.1089/neu.2009-0896
Source: PubMed

ABSTRACT Single-voxel proton magnetic resonance imaging ((1)H-MRS) and proton MR spectroscopic imaging ((1)H-MRSI) were used to compare brain metabolite levels in semi-acute mild traumatic brain injury (mTBI) patients (n = 10) and matched healthy controls (n = 9). The (1)H-MRS voxel was positioned in the splenium, a region known to be susceptible to axonal injury in TBI, and a single (1)H-MRSI slice was positioned above the lateral ventricles. To increase sensitivity to the glutamate (Glu) and the combined glutamate-glutamine (Glx) signal, an inter-pulse echo time shown to emphasize the major Glu signals was used along with an analysis method that reduces partial volume errors by using water as a concentration standard. Our preliminary findings indicate significantly lower levels of gray matter Glx and higher levels of white matter creatine-phosphocreatine (Cr) in mTBI subjects relative to healthy controls. Furthermore, Cr levels were predictive of executive function and emotional distress in the combined groups. These results suggest that perturbations in Cr, a critical component of the brain's energy metabolism, and Glu, the brain's major neurotransmitter, may occur following mTBI. Moreover, the different pattern of results for gray and white matter suggests tissue-specific metabolic responses to mTBI.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) studies have demonstrated that measures of altered metabolism and axonal injury can be detected following traumatic brain injury. The aim of this study was to characterize and compare the distributions of altered image parameters obtained by these methods in subjects with a range of injury severity and to examine their relative sensitivity for diagnostic imaging in this group of subjects. DTI and volumetric MR spectroscopic imaging data were acquired in 40 subjects that had experienced a closed-head traumatic brain injury, with a median of 36 days post injury. Voxel based analyses were performed to examine differences of group mean values relative to normal controls, and to map significant alterations of image parameters in individual subjects. The between group analysis revealed widespread alteration of tissue metabolites that was most strongly characterized by increased choline throughout the cerebrum and cerebellum, reaching as much as 40% increase from control values for the group with the worse cognitive assessment score. In contrast, the between-group comparison of DTI measures revealed only minor differences; however, the z score image analysis of individual subject DTI parameters revealed regions of altered values relative to controls throughout the major white-matter tracts, but with considerable heterogeneity between subjects and with a smaller extent than the findings for altered metabolite measures. The findings of this study illustrate the complimentary nature of these neuroimaging methods.
    Journal of Neurotrauma 10/2014; DOI:10.1089/neu.2014.3505 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is characterized by loss of brain volume, which may represent an ongoing pathophysiological process. This loss of brain volume may be explained by reduced neuropil rather than neuronal loss, suggesting abnormal synaptic plasticity and cortical microcircuitry. A possible mechanism is hypofunction of the NMDA-type of glutamate receptor, which reduces the excitation of inhibitory GABAergic interneurons, resulting in a disinhibition of glutamatergic pyramidal neurons. Disinhibition of pyramidal cells may result in excessive stimulation by glutamate, which in turn could cause neuronal damage or death through excitotoxicity. In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.
    Schizophrenia Research 04/2014; 6. DOI:10.1016/S0920-9964(14)70179-3 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial direct current stimulation (tDCS) modulates glutamatergic neurotransmission and can be utilized as a novel treatment intervention for a multitude of populations. However, the exact mechanism by which tDCS modulates the brain’s neural architecture, from the micro to macro scales, have yet to be illuminated. Using a within-subjects design, resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) were performed immediately before and after the administration of anodal tDCS over right parietal cortex. Group independent component analysis (ICA) was used to decompose fMRI scans into 75 brain networks, from which 12 resting-state networks were identified that had significant voxel-wise functional connectivity to anatomical regions of interest. 1H-MRS was used to obtain estimates of combined glutamate and glutamine (Glx) concentrations from bilateral intraparietal sulcus. Paired sample t-tests showed significantly increased Glx under the anodal electrode, but not in homologous regions of the contralateral hemisphere. Increases of within-network connectivity were observed within the superior parietal, inferior parietal, left frontal-parietal, salience and cerebellar intrinsic networks, and decreases in connectivity were observed in the anterior cingulate and the basal ganglia (p<0.05, FDR-corrected). Individual differences in Glx concentrations predicted network connectivity in most of these networks. The observed relationships between glutamatergic neurotransmission and network connectivity may be used to guide future tDCS protocols that aim to target and alter neuroplastic mechanisms in healthy individuals as well as those with psychiatric and neurologic disorders.
    Brain Research 10/2014; 1594. DOI:10.1016/j.brainres.2014.09.066 · 2.83 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
May 31, 2014