Expression of CHD1L in bladder cancer and its influence on prognosis and survival

Department of Urology, Jinling Hospital, No. 305, Zhongshandong Road, Nanjing, 210002, China.
Tumor Biology (Impact Factor: 3.61). 06/2013; 34(6). DOI: 10.1007/s13277-013-0951-4
Source: PubMed


Chromodomain helicase/ATPase DNA-binding protein 1-like (CHD1L) is overexpressed and highly associated with poor prognosis in many malignancies. However, the role of CHD1L in bladder cancer (BC) has not been thoroughly elucidated. The aim of this study is to investigate the relationship of CHD1L expression with clinicopathological parameters and prognosis in BC. Immunohistochemistry was carried out to investigate the protein expression of CHD1L in 153 BC tissues and 87 adjacent noncancerous tissues. Our data found that CHD1L protein expression was significantly higher in BC tissues than in adjacent noncancerous tissues (P < 0.001). CHD1L overexpression was significantly correlated with histologic grade (P = 0.005) and tumor stage (P = 0.009). The Kaplan-Meier survival analysis revealed that survival time of patients with high CHD1L expression was significantly shorter than that with low CHD1L expression. Multivariate analysis further demonstrated that CHD1L was an independent prognostic factor for patients with BC. In conclusion, CHD1L is likely to be a valuable marker for carcinogenesis and progression of BC. It might be used as an important diagnostic and prognostic marker for BC patients.

5 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer and ~ 140 driver genes have been identified, but not all of them have been extensively investigated. CHD1L (chromodomain helicase/ATPase DNA binding protein 1-like gene) or ALC1 (amplified in liver cancer 1) is a newly identified oncogene located at Chr1q21 and it is amplified in many solid tumors. Functional studies of CHD1L in hepatocellular carcinoma and other tumors strongly suggested that its oncogenic role in tumorigenesis is through unleashed cell proliferation, G1/S transition and inhibition of apoptosis. The underlying mechanisms of CHD1L activation may disrupt the cell death program via binding the apoptotic protein Nur77 or through activation of the AKT pathway by up-regulation of CHD1L-mediated target genes (e.g., ARHGEF9, SPOCK1 or TCTP). CHD1L is now considered to be a novel independent biomarker for progression, prognosis and survival in several solid tumors. The accumulated knowledge about its functions will provide a focus to search for targeted treatment in specific subtypes of tumors.
    Molecular Cancer 12/2013; 12(1):170. DOI:10.1186/1476-4598-12-170 · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To understand lncRNAs expression profiling and their potential functions in bladder cancer, we investigated the lncRNA and coding RNA expression on human bladder cancer and normal bladder tissues. Bioinformatic analysis revealed thousands of significantly differentially expressed lncRNAs and coding mRNA in bladder cancer relative to normal bladder tissue. Co-expression analysis revealed that 50% of lncRNAs and coding RNAs expressed in the same direction. A subset of lncRNAs might be involved in mTOR signaling, p53 signaling, cancer pathways. Our study provides a large scale of co-expression between lncRNA and coding RNAs in bladder cancer cells and lays biological basis for further investigation.
    Cancer letters 04/2014; 349(1). DOI:10.1016/j.canlet.2014.03.033 · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Genetic analysis of bladder cancer has revealed a number of frequently altered genes, including frequent alterations of the telomerase (TERT) gene promoter, although few altered genes have been functionally evaluated. Our objective is to characterize alterations observed by exome sequencing and sequencing of the TERT promoter, and to examine the functional relevance of histone lysine (K)-specific demethylase 6A (KDM6A/UTX), a frequently mutated histone demethylase, in bladder cancer. Experimental design: We analyzed bladder cancer samples from 54 U.S. patients by exome and targeted sequencing and confirmed somatic variants using normal tissue from the same patient. We examined the biologic function of KDM6A using in vivo and in vitro assays. Results: We observed frequent somatic alterations in BRCA1 associated protein-1 (BAP1) in 15% of tumors, including deleterious alterations to the deubiquitinase active site and the nuclear localization signal. BAP1 mutations contribute to a high frequency of tumors with breast cancer (BRCA) DNA repair pathway alterations and were significantly associated with papillary histologic features in tumors. BAP1 and KDM6A mutations significantly co-occurred in tumors. Somatic variants altering the TERT promoter were found in 69% of tumors but were not correlated with alterations in other bladder cancer genes. We examined the function of KDM6A, altered in 24% of tumors, and show depletion in human bladder cancer cells, enhanced in vitro proliferation, in vivo tumor growth, and cell migration. Conclusions: This study is the first to identify frequent BAP1 and BRCA pathway alterations in bladder cancer, show TERT promoter alterations are independent of other bladder cancer gene alterations, and show KDM6A loss is a driver of the bladder cancer phenotype.
    Clinical Cancer Research 09/2014; 20(18):4935-48. DOI:10.1158/1078-0432.CCR-14-0330 · 8.72 Impact Factor
Show more