Biomechanical study of lumbar spinal arthroplasty with a semi-constrained artificial disc (activ L) in the human cadaveric spine.

Department of Neurosurgery, Korea University Medical Center, Seoul, Korea.
Journal of Korean Neurosurgical Society (Impact Factor: 0.56). 04/2009; 45(3):169-75. DOI: 10.3340/jkns.2009.45.3.169
Source: PubMed

ABSTRACT The goal of this study was to evaluate the biomechanical features of human cadaveric spines implanted with the Activ L prosthesis.
Five cadaveric human lumbosacral spines (L2-S2) were tested for different motion modes, i.e. extension and flexion, right and left lateral bending and rotation. Baseline measurements of the range of motion (ROM), disc pressure (DP), and facet strain (FS) were performed in six modes of motion by applying loads up to 8 Nm, with a loading rate of 0.3 Nm/second. A constant 400 N axial follower preload was applied throughout the loading. After the Activ L was implanted at the L4-L5 disc space, measurements were repeated in the same manner.
The Activ L arthroplasty showed statistically significant decrease of ROM during rotation, increase of ROM during flexion and lateral bending at the operative segment and increase of ROM at the inferior segment during flexion. The DP of the superior disc of the operative site was comparable to those of intact spine and the DP of the inferior disc decreased in all motion modes, but these were not statistically significant. For FS, statistically significant decrease was detected at the operative facet during flexion and at the inferior facet during rotation.
In vitro physiologic preload setting, the Activ L arthroplasty showed less restoration of ROM at the operative and adjacent levels as compared with intact spine. However, results of this study revealed that there are several possible theoretical useful results to reduce the incidence of adjacent segment disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluates the short-term clinical outcome, radiological, histological and device retrieval findings of two patients with second generation lumbar total disc replacement (TDR). The first patient had a single level L4-L5 Activ-L TDR, the second patient a L4-L5 Mobidisc and L5-S1 Activ-L TDR. The TDRs were implanted elsewhere and had implantation times between 1.3 and 2.8 years. Plain radiographs and CT-scanning showed slight subsidence of the Activ-L TDR in both patients and facet joint degeneration. The patients underwent revision surgery because of recurrent back and leg pain. After removal of the TDR and posterolateral fusion, the pain improved. Histological examination revealed large ultrahigh molecular weight polyethylene (UHMWPE) particles and giant cells in the retrieved tissue surrounding the Mobidisc. The particles in the tissue samples of the Activ-L TDR were smaller and contained in macrophages. Retrieval analysis of the UHMWPE cores revealed evidence of minor adhesive and abrasive wear with signs of impingement in both TDR designs. Although wear was unrelated to the reason for revision, this study demonstrates the presence of UHMWPE particles and inflammatory cells in second generation TDR. Long-term follow-up after TDR is indicated for monitoring wear and implant status.
    European Spine Journal 01/2012; 21 Suppl 4:S513-20. · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to optimize the design and application of semi-constrained integrated artificial discs (SIADs) using a finite element (FE) analysis following implantation, wherein the zygapophysial joints of the segment were biomechanically reconstructed. An FE model of the L4-L5 segment was constructed. Variations in the stresses on the discs and zygapophysial joints were observed during 5° anteflexion, 5° extension and 5° rotation under the 400-N applied axial load. Stresses and load translation analyses of the discs and zygapophysial joints were conducted during anteflexion, extension and rotation under the 400-N applied axial load. Following implantation of the lumbar segments, the stresses on the SIAD zygapophysial joints were not significantly different from those of physiological discs during anteflexion, and these were both marginally greater compared with those of non-constrained artificial discs (NADs). During extension, the increase in the stress on the SIAD zygapophysial joints was less than that on NAD zygapophysial joints. Stresses on the NAD zygapophysial joints were higher than those on SIAD and physiological discs during rotation. The stress on the SIAD zygapophysial joints was not significantly different from that on physiological discs during rotation. For SIADs and NADs, the stresses on the zygapophysial joints and the displacements of the discs were greater compared with those of the physiological discs during extension. The SIADs affected the variations in the stresses on the implanted segment more than the NADs, and the SIADs protected the zygapophysial joints of the implanted segment to a higher degree than the NADs.
    Experimental and therapeutic medicine 12/2013; 6(6):1423-1430. · 0.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the "gold standard" in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population.
    Advances in orthopedics. 01/2012; 2012:726210.


1 Download
Available from