The miR-17/92 Polycistron Is Up-regulated in Sonic Hedgehog-Driven Medulloblastomas and Induced by N-myc in Sonic Hedgehog-Treated Cerebellar Neural Precursors

Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
Cancer Research (Impact Factor: 9.28). 05/2009; 69(8):3249-55. DOI: 10.1158/0008-5472.CAN-08-4710
Source: PubMed

ABSTRACT Medulloblastoma is the most common malignant pediatric brain tumor, and mechanisms underlying its development are poorly understood. We identified recurrent amplification of the miR-17/92 polycistron proto-oncogene in 6% of pediatric medulloblastomas by high-resolution single-nucleotide polymorphism genotyping arrays and subsequent interphase fluorescence in situ hybridization on a human medulloblastoma tissue microarray. Profiling the expression of 427 mature microRNAs (miRNA) in a series of 90 primary human medulloblastomas revealed that components of the miR-17/92 polycistron are the most highly up-regulated miRNAs in medulloblastoma. Expression of miR-17/92 was highest in the subgroup of medulloblastomas associated with activation of the sonic hedgehog (Shh) signaling pathway compared with other subgroups of medulloblastoma. Medulloblastomas in which miR-17/92 was up-regulated also had elevated levels of MYC/MYCN expression. Consistent with its regulation by Shh, we observed that Shh treatment of primary cerebellar granule neuron precursors (CGNP), proposed cells of origin for the Shh-associated medulloblastomas, resulted in increased miR-17/92 expression. In CGNPs, the Shh effector N-myc, but not Gli1, induced miR-17/92 expression. Ectopic miR-17/92 expression in CGNPs synergized with exogenous Shh to increase proliferation and also enabled them to proliferate in the absence of Shh. We conclude that miR-17/92 is a positive effector of Shh-mediated proliferation and that aberrant expression/amplification of this miR confers a growth advantage to medulloblastomas.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma (MB) is the most common malignant pediatric brain tumor. While the pathways that are deregulated in MB remain to be fully characterized, amplification and/or overexpression of the MYCN gene, which is has a critical role in cerebellar development as a regulator of neural progenitor cell fate, has been identified in several MB subgroups. Phenotypically, aberrant expression of MYCN is associated with the large-cell/anaplastic MB variant, which accounts for 5-15% of cases and is associated with aggressive disease and poor clinical outcome. To better understand the role of MYCN in MB in vitro and in vivo and to aid the development of MYCN-targeted therapeutics we established tumor-derived neurosphere cell lines from the GTML (Glt1-tTA/TRE-MYCN-Luc) genetically engineered mouse model. A fraction of GTML neurospheres were found to be growth factor independent, expressed CD133 (a marker of neural stem cells), failed to differentiate upon MYCN withdrawal and were highly tumorigenic when orthotopically implanted into the cerebellum. Principal component analyzes using single cell RNA assay data suggested that the clinical candidate aurora-A kinase inhibitor MLN8237 converts GTML neurospheres to resemble non-MYCN expressors. Correlating with this, MLN8237 significantly extended the survival of mice bearing GTML MB allografts. In summary, our results demonstrate that MYCN plays a critical role in expansion and survival of aggressive MB-propagating cells, and establish GTML neurospheres as an important resource for the development of novel therapeutic strategies.
    PLoS ONE 01/2015; 10(3):e0119834. DOI:10.1371/journal.pone.0119834 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonal tumors of the central nervous system represent a heterogeneous group of childhood cancers with an unknown pathogenesis; diagnosis, on the basis of histological appearance alone, is controversial and patients' response to therapy is difficult to predict. They encompass medulloblastoma, atypical teratoid/rhabdoid tumors and a group of primitive neuroectodermal tumors. All are aggressive tumors with the tendency to disseminate throughout the central nervous system. The large amount of genomic and molecular data generated over the last 5-10 years encourages optimism that new molecular targets will soon improve outcomes. Recent neurobiological studies have uncovered the key role of microRNAs (miRNAs) in embryonal tumors biology and their potential use as biomarkers is increasingly being recognized and investigated. However the successful use of microRNAs as reliable biomarkers for the detection and management of pediatric brain tumors represents a substantial challenge. This review debates the importance of miRNAs in the biology of central nervous systemembryonal tumors focusing on medulloblastoma and atypical teratoid/rhabdoid tumors and highlights the advantages as well as the limitations of their prospective application as biomarkers and candidates for molecular therapeutic targets.
    International Journal of Molecular Sciences 11/2014; 15(11):21554-21586. DOI:10.3390/ijms151121554 · 2.46 Impact Factor
  • Genome Bioinformatics and Computational Biology, Edited by Renu Tuteja, 01/2012: chapter Phylogenomics; Nova Science., ISBN: 9781621009252