Surgical Stress Promotes Tumor Growth in Ovarian Carcinoma

Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
Clinical Cancer Research (Impact Factor: 8.19). 04/2009; 15(8):2695-702. DOI: 10.1158/1078-0432.CCR-08-2966
Source: PubMed

ABSTRACT Surgical stress has been suggested to facilitate the growth of preexisting micrometastases as well as small residual tumor postoperatively. The purpose of this study was to examine the effects of surgical stress on ovarian cancer growth and to determine underlying mechanisms responsible for increased growth.
To mimic the effects of surgery, we did a laparotomy or mastectomy under isoflurane inhalation on athymic nude mice 4 days after i.p. tumor cell injection. Propranolol infusion via Alzet pumps was used to block the influence of sympathetic nervous system activation by surgical stress.
In both HeyA8 and SKOV3ip1 models, the mice in the laparotomy and mastectomy groups had significantly greater tumor weight (P < 0.05) and nodules (P < 0.05) compared with anesthesia only controls. There was no increase in tumor weight following surgery in the beta-adrenergic receptor-negative RMG-II model. Propranolol completely blocked the effects of surgical stress on tumor growth, indicating a critical role for beta-adrenergic receptor signaling in mediating the effects of surgical stress on tumor growth. In the HeyA8 and SKOV3ip1 models, surgery significantly increased microvessel density (CD31) and vascular endothelial growth factor expression, which were blocked by propranolol treatment.
These results indicate that surgical stress could enhance tumor growth and angiogenesis, and beta-blockade might be effective in preventing such effects.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate plasma Monocyte Chemotactic Protein-1 levels preoperatively in colorectal cancer (CRC) and benign patients and postoperatively after CRC resection.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In many common cancers, production of cAMP boosts cancer proliferation, survival, and aggressiveness, reflecting the fact that, through mechanisms that require further clarification, cAMP can promote tyrosine phosphorylation, notably transactivation of the epidermal growth factor receptor (EGFR). Hormones which activate adenylate cyclase in many cancers include PGE2 – often produced by cox-2 activity within tumors – and adrenergic hormones, acting on beta2 receptors. NSAID cyclooxygenase inhibitors, including low-dose aspirin, clearly reduce risk for many adenocarcinomas, but the impact of cox-2 inhibitors in clinical cancer therapy remains somewhat equivocal. There is increasing evidence that increased sympathetic drive, often reflecting psychic stress or tobacco usage, increases risk for, and promotes the aggressiveness of, many cancers. The non-specific beta antagonist propranolol shows cancer-retardant activity in pre-clinical rodent studies, especially in stressed animals, and a limited amount of epidemiology concludes that concurrent propranolol usage is associated with superior prognosis in breast cancer, ovarian cancer, and melanoma. Epidemiology correlating increased resting heart rate with increased total cancer mortality can be interpreted as compelling evidence that increased sympathetic drive encourages the onset and progression of common cancers. Conversely, hormones which inhibit adenylate cyclase activity in cancers may have potential for cancer control; GABA, which can be administered as a well-tolerated nutraceutical, has potential in this regard. Combination regimens intended to down-regulate cancer cAMP levels, perhaps used in conjunction with EGFR inhibitors, may have considerable potential for suppressing the contribution of cAMP/EGFR to cancer aggressiveness. This model also predicts that certain other hormones which activate adenylate cylase in various tissue may play a yet-unsuspected role in cancer induction and spread.
    Medical Hypotheses 08/2014; 83(2):142–147. DOI:10.1016/j.mehy.2014.05.009 · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Context: Propranolol, atenolol, and ICI118,551 are non-selective β-adrenergic receptor (AR), β1-AR, and β2-AR antagonists, respectively. Objective: We investigated the efficacy of propranolol, atenolol, and ICI118,551 on proliferation, migration, and invasion of non-stimulated breast (MCF7), colon (HT-29), and hepatocellular (HepG2) cancer cells. Materials and methods: β-AR expression profiling of cells was performed by real time PCR. Cell proliferation was determined by MTT. Boyden chamber and scratch assays were performed to evaluate invasion and migration. Results and discussion: All cell lines expressed β-ARs. ICI118,551 was the most cytotoxic, whereas atenolol was the least effective β-AR antagonist for 24, 48, and 72 h. Cell invasion was inhibited by ICI118,551 (45, 46, and 50% for MCF7, HT29, and HepG2, respectively) and propranolol (72, 65, and 90% for MCF7, HT29, and HepG2, respectively). Propranolol, atenolol, and ICI118,551 reduced migration of MCF7, HT-29, and HepG2 cells to varying extents depending on the application concentration and duration. Propranolol and atenolol reduced migration of MCF7 and HT-29 in a concentration-dependent manner, whereas migration of these cells decreased after 48 and 72 h of ICI118,551 applications. Conclusion: Beta2-AR antagonist seemed to be the most cytotoxic β-blocker on non-stimulated cancer cells. Propranolol and ICI118,551 were more effective than atenolol in inhibiting invasion and migration of non-stimulated MCF7 and HT-29 cells; ICI118,551 being the most potent. Concordantly, β2-selective blockage seemed to be more effective for non-stimulated cells. Effect of the selective β-AR antagonists showed variation depending on the concentration, incubation time, and histological origin of cells.
    Pharmaceutical Biology 07/2014; DOI:10.3109/13880209.2014.892513 · 1.34 Impact Factor

Full-text (2 Sources)

Available from
Nov 17, 2014