Article

Host range and genetic relatedness of Colletotrichum acutatum isolates from fruit crops and leatherleaf fern in Florida.

University of Florida, Department of Plant Pathology, Gulf Coast Research and Education Center, Wimauma, FL 33598, USA.
Phytopathology (Impact Factor: 2.97). 06/2009; 99(5):620-31. DOI: 10.1094/PHYTO-99-5-0620
Source: PubMed

ABSTRACT Isolates of Colletotrichum acutatum were collected from anthracnose-affected strawberry, leatherleaf fern, and Key lime; ripe-rot-affected blueberry; and postbloom fruit drop (PFD)-affected sweet orange in Florida. Additional isolates from ripe-rot-affected blueberry were collected from Georgia and North Carolina and from anthracnose-affected leatherleaf fern in Costa Rica. Pathogenicity tests on blueberry and strawberry fruit; foliage of Key lime, leatherleaf fern, and strawberry; and citrus flowers showed that isolates were highly pathogenic to their host of origin. Isolates were not pathogenic on foliage of heterologous hosts; however, several nonhomologous isolates were mildly or moderately pathogenic to citrus flowers and blueberry isolates were pathogenic to strawberry fruit. Based on sequence data from the internal transcribed spacer (ITS)1-5.8S rRNA-ITS2 region of the rDNA repeat, the glutaraldehyde-3-phosphate dehydrogenase intron 2 (G3PD), and the glutamine synthase intron 2 (GS), isolates from the same host were identical or very similar to each other and distinct from those isolated from other hosts. Isolates from leatherleaf fern in Florida were the only exception. Among these isolates, there were two distinct G3PD and GS sequences that occurred in three of four possible combinations. Only one of these combinations occurred in Costa Rica. Although maximum parsimony trees constructed from genomic regions individually displayed little or no homoplasy, there was a lack of concordance among genealogies that was consistent with a history of recombination. This lack of concordance was particularly evident within a clade containing PFD, Key lime, and leatherleaf fern isolates. Overall, the data indicated that it is unlikely that a pathogenic strain from one of the hosts examined would move to another of these hosts and produce an epidemic.

1 Bookmark
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colletotrichum acutatum is known as an important anthracnose pathogen of a wide range of host plants worldwide. Numerous studies have reported subgroups within the C. acutatum species complex. Multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3) of 331 strains previously identified as C. acutatum and other related taxa, including strains from numerous hosts with wide geographic distributions, confirmed the molecular groups previously recognised and identified a series of novel taxa. Thirty-one species are accepted, of which 21 have not previously been recognised. Colletotrichum orchidophilum clusters basal to the C. acutatum species complex. There is a high phenotypic diversity within this complex, and some of the species appear to have preferences to specific hosts or geographical regions. Others appear to be plurivorous and are present in multiple regions. In this study, only C. salicis and C. rhombiforme formed sexual morphs in culture, although sexual morphs have been described from other taxa (especially as laboratory crosses), and there is evidence of hybridisation between different species. One species with similar morphology to C. acutatum but not belonging to this species complex was also described here as new, namely C. pseudoacutatum. TAXONOMIC NOVELTIES: New combinations - Colletotrichum limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. lupini (Bondar) Damm, P.F. Cannon & Crous, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. New species - C. acerbum Damm, P.F. Cannon & Crous, C. australe Damm, P.F. Cannon & Crous, C. brisbanense Damm, P.F. Cannon & Crous, C. cosmi Damm, P.F. Cannon & Crous, C. costaricense Damm, P.F. Cannon & Crous, C. cuscutae Damm, P.F. Cannon & Crous, C. guajavae Damm, P.F. Cannon & Crous, C. indonesiense Damm, P.F. Cannon & Crous, C. johnstonii Damm, P.F. Cannon & Crous, C. kinghornii Damm, P.F. Cannon & Crous, C. laticiphilum Damm, P.F. Cannon & Crous, C. melonis Damm, P.F. Cannon & Crous, C. orchidophilum Damm, P.F. Cannon & Crous, C. paxtonii Damm, P.F. Cannon & Crous, C. pseudoacutatum Damm, P.F. Cannon & Crous C. pyricola Damm, P.F. Cannon & Crous, C. rhombiforme Damm, P.F. Cannon & Crous, C. scovillei Damm, P.F. Cannon & Crous, C. sloanei Damm, P.F. Cannon & Crous, C. tamarilloi Damm, P.F. Cannon & Crous, C. walleri Damm, P.F. Cannon & Crous. Typifications: Epitypifications - C. acutatum J.H. Simmonds, C. limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. nymphaeae (Pass.) Aa, C. phormii (Henn.) D.F. Farr & Rossman, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. Lectotypifications - C. nymphaeae (Pass.) Aa, C. orchidearum Allesch.
    Studies in Mycology 09/2012; 73(1):37-113. · 6.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endophytic fungi are a diverse and important group of microorganisms. We investigated the occurrence of Colletotrichum species as endophytes in two common tropical grass species, Pennisetum purpureum (dwarf napier) and Cymbopogon citratus (lemon grass) in Thailand. Combined phylogenetic analysis of ITS, partial sequences of actin (ACT), calmodulin (CAL) and glyceraldehydes-3-phosphate dehydrogenase (GAPDH) gene regions and morphology were used to characterize the species. This is the first report of an association as endophytes of Colletotrichum fructicola, C. tropicale and C. siamense with Pennisetum purpureum, and C. fructicola and C. siamense with Cymbopogon citratus. Colletotrichum endophytica sp. nov. associated with Pennisetum purpureum, is introduced based on multi-locus phylogenetic analysis with descriptions and illustrations. The potential hyperdiversity of the endophytic Colletotrichum species associated with tropical grasses is discussed with an emphasis on future research
    Fungal diversity 01/2013; · 5.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A review is provided of the current state of understanding of Colletotrichum systematics, focusing on species-level data and the major clades. The taxonomic placement of the genus is discussed, and the evolution of our approach to species concepts and anamorph-teleomorph relationships is described. The application of multilocus technologies to phylogenetic analysis of Colletotrichum is reviewed, and selection of potential genes/loci for barcoding purposes is discussed. Host specificity and its relation to speciation and taxonomy is briefly addressed. A short review is presented of the current status of classification of the species clusters that are currently without comprehensive multilocus analyses, emphasising the orbiculare and destructivum aggregates. The future for Colletotrichum biology will be reliant on consensus classification and robust identification tools. In support of these goals, a Subcommission on Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web environment.
    Studies in Mycology 09/2012; 73(1):181-213. · 6.23 Impact Factor

Full-text

View
6 Downloads
Available from