Use of P-32 To Study Dynamics of the Mitochondrial Phosphoproteome

Laboratory of Cardiac Energetics and Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-1061, USA.
Journal of Proteome Research (Impact Factor: 4.25). 05/2009; 8(6):2679-95. DOI: 10.1021/pr800913j
Source: PubMed


Protein phosphorylation is a well-characterized regulatory mechanism in the cytosol, but remains poorly defined in the mitochondrion. In this study, we characterized the use of (32)P-labeling to monitor the turnover of protein phosphorylation in the heart and liver mitochondria matrix. The (32)P labeling technique was compared and contrasted to Phos-tag protein phosphorylation fluorescent stain and 2D isoelectric focusing. Of the 64 proteins identified by MS spectroscopy in the Phos-Tag gels, over 20 proteins were correlated with (32)P labeling. The high sensitivity of (32)P incorporation detected proteins well below the mass spectrometry and even 2D gel protein detection limits. Phosphate-chase experiments revealed both turnover and phosphate associated protein pool size alterations dependent on initial incubation conditions. Extensive weak phosphate/phosphate metabolite interactions were observed using nondisruptive native gels, providing a novel approach to screen for potential allosteric interactions of phosphate metabolites with matrix proteins. We confirmed the phosphate associations in Complexes V and I due to their critical role in oxidative phosphorylation and to validate the 2D methods. These complexes were isolated by immunocapture, after (32)P labeling in the intact mitochondria, and revealed (32)P-incorporation for the alpha, beta, gamma, OSCP, and d subunits in Complex V and the 75, 51, 42, 23, and 13a kDa subunits in Complex I. These results demonstrate that a dynamic and extensive mitochondrial matrix phosphoproteome exists in heart and liver.

25 Reads
  • Source
    • "We demonstrated that the phospho-protein signal of three protein bands were increased in mitochondria isolated from synaptosomes treated with ψδRACK. Proteomics analyses of these bands revealed the presence of the following phosphoproteins: ubiquinol cytochrome c reductase core protein 2, Fe-S protein 2, 3 and flavoprotein 2 of NADH dehydrogenase, creatine kinase, beta subunit of succinate-coenzyme A ligase, E1 alpha form 1 subunit of pyruvate dehydrogenase (PDH), alpha and beta subunits of ATP synthase, citrate synthase, and prohibitin [37], [38]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The release of cytochrome c from the mitochondria following cerebral ischemia is a key event leading to cell death. The goal of the present study was to determine the mechanisms involved in post-ischemic activation of protein kinase c delta (δPKC) that lead to cytochrome c release. We used a rat model of cardiac arrest as an in vivo model, and an in vitro analog, oxygen glucose deprivation (OGD) in rat hippocampal synaptosomes. Cardiac arrest triggered translocation of δPKC to the mitochondrial fraction at 1 h reperfusion. In synaptosomes, the peptide inhibitor of δPKC blocked OGD-induced translocation to the mitochondria. We tested two potential pathways by which δPKC activation could lead to cytochrome c release: phosphorylation of phospholipid scramblase-3 (PLSCR3) and/or protein phosphatase 2A (PP2A). Cardiac arrest increased levels of phosphorlyated PLSCR3; however, inhibition of δPKC translocation failed to affect the OGD-induced increase in PLSCR3 in synaptosomal mitochondria suggesting the post-ischemic phosphorylation of PLSCR3 is not mediated by δPKC. Inhibition of either δPKC or PP2A decreased cytochrome c release from synaptosomal mitochondria. Cardiac arrest results in the dephosphorylation of Bad and Bax, both downstream targets of PP2A promoting apoptosis. Inhibition of δPKC or PP2A prevented OGD-induced Bad, but not Bax, dephosphorylation. To complement these studies, we used proteomics to identify novel mitochondrial substrates of δPKC. We conclude that δPKC initiates cytochrome c release via phosphorylation of PP2A and subsequent dephosphorylation of Bad and identified δPKC, PP2A and additional mitochondrial proteins as potential therapeutic targets for ischemic neuroprotection.
    PLoS ONE 07/2011; 6(7):e22057. DOI:10.1371/journal.pone.0022057 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heart is capable of balancing the rate of mitochondrial ATP production with utilization continuously over a wide range of activity. This results in a constant phosphorylation potential despite a large change in metabolite turnover. The molecular mechanisms responsible for generating this energy homeostasis are poorly understood. The best candidate for a cytosolic signaling molecule reflecting ATP hydrolysis is Ca(2+). Since Ca(2+) initiates and powers muscle contraction as well as serves as the primary substrate for SERCA, Ca(2+) is an ideal feed-forward signal for priming ATP production. With the sarcoplasmic reticulum to cytosolic Ca(2+) gradient near equilibrium with the free energy of ATP, cytosolic Ca(2+) release is exquisitely sensitive to the cellular energy state providing a feedback signal. Thus, Ca(2+) can serve as a feed-forward and feedback regulator of ATP production. Consistent with this notion is the correlation of cytosolic and mitochondrial Ca(2+) with work in numerous preparations as well as the localization of mitochondria near Ca(2+) release sites. How cytosolic Ca(2+) signaling might regulate oxidative phosphorylation is a focus of this review. The relevant Ca(2+) sensitive sites include several dehydrogenases and substrate transporters together with a post-translational modification of F1-FO-ATPase and cytochrome oxidase. Thus, Ca(2+) apparently activates both the generation of the mitochondrial membrane potential as well as utilization to produce ATP. This balanced activation extends the energy homeostasis observed in the cytosol into the mitochondria matrix in the never resting heart.
    Biochimica et Biophysica Acta 06/2009; 1787(11):1334-41. DOI:10.1016/j.bbabio.2009.05.011 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Succinyl-CoA synthetase (SCS) is the only mitochondrial enzyme capable of ATP production via substrate level phosphorylation in the absence of oxygen, but it also plays a key role in the citric acid cycle, ketone metabolism, and heme synthesis. Inorganic phosphate (P(i)) is a signaling molecule capable of activating oxidative phosphorylation at several sites, including NADH generation and as a substrate for ATP formation. In this study, it was shown that P(i) binds the porcine heart SCS alpha-subunit (SCSalpha) in a noncovalent manner and enhances its enzymatic activity, thereby providing a new target for P(i) activation in mitochondria. Coupling 32P labeling of intact mitochondria with SDS gel electrophoresis revealed that 32P labeling of SCSalpha was enhanced in substrate-depleted mitochondria. Using mitochondrial extracts and purified bacterial SCS (BSCS), we showed that this enhanced 32P labeling resulted from a simple binding of 32P, not covalent protein phosphorylation. The ability of SCSalpha to retain its 32P throughout the SDS denaturing gel process was unique over the entire mitochondrial proteome. In vitro studies also revealed a P(i)-induced activation of SCS activity by more than 2-fold when mitochondrial extracts and purified BSCS were incubated with millimolar concentrations of P(i). Since the level of 32P binding to SCSalpha was increased in substrate-depleted mitochondria, where the matrix P(i) concentration is increased, we conclude that SCS activation by P(i) binding represents another mitochondrial target for the P(i)-induced activation of oxidative phosphorylation and anaerobic ATP production in energy-limited mitochondria.
    Biochemistry 07/2009; 48(30):7140-9. DOI:10.1021/bi900725c · 3.02 Impact Factor
Show more