Molecular characterization of the human NANOG protein.

Department of Pediatrics, Division of Research Immunology/Bone Marrow Transplantation, Saban Research Institute at Childrens Hospital Los Angles, University of Southern California, Los Angeles, California, USA.
Stem Cells (Impact Factor: 7.7). 05/2009; 27(4):812-21. DOI: 10.1634/stemcells.2008-0657
Source: PubMed

ABSTRACT NANOG is a key transcriptional regulator of pluripotent stem cell (PSC) self-renewal. NANOG occupies promoters that are active and others that are repressed during self-renewal; however, the mechanisms by which NANOG regulates transcriptional repression and activation are unknown. We hypothesized that individual protein domains of NANOG control its interactions with both the promoters and its coregulators. We performed a detailed characterization of the functional domains in the human (h) NANOG protein, using a panel of deletion-mutant and point-mutant constructs. We determined that six amino acids in the homeodomain ((136)YKQVKT(141)) are sufficient for the nuclear localization of hNANOG. We also determined that the tryptophan-rich region (W) of hNANOG contains a CRM1-independent signal for nuclear export, suggesting a possible cellular shuttling behavior that has not been reported for hNANOG. We also show that at least four tryptophans are required for nuclear export. We also determined that similar to murine (m) NANOG, the W region of hNANOG contains a homodimerization domain. Finally, in vitro transactivation analyses identified distinct regions that enhance or diminish activity at gene promoters that are active during self-renewal. Specifically, the N-terminal region interferes with transcription and removal of this region that produced a "super-active" hNANOG with enhanced transcriptional activity. We also confirmed that the transcriptional activator in hNANOG is contained in the C-terminal region, similar to murine NANOG. In summary, this study has characterized the structure and function of hNANOG protein leading to an increased understanding of the mechanism by which hNANOG regulates both transcriptional activation and repression during PSC self-renewal.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold great promise for future use in tissue replacement therapies due to their ability to self-renew indefinitely and to differentiate into all adult cell types. Harnessing this therapeutic potential efficiently requires a much deeper understanding of the molecular processes at work within the pluripotency network. The transcription factors Nanog, Oct4, and Sox2 reside at the core of this network, where they interact and regulate their own expression as well as that of numerous other pluripotency factors. Of these core factors, Nanog is critical for blocking the differentiation of pluripotent cells, and more importantly, for establishing the pluripotent ground state during somatic cell reprogramming. Both mouse and human Nanog are able to form dimers in vivo, allowing them to preferentially interact with certain factors and perform unique functions. Recent studies have identified an evolutionary functional conservation among vertebrate Nanog orthologs from chick, zebrafish, and the axolotl salamander, adding an additional layer of complexity to Nanog function. Here we present a detailed overview of published work focusing on Nanog structure, function, dimerization, and regulation at the genetic and post-translational levels with regard to the establishment and maintenance of pluripotency. The full spectrum of Nanog function in pluripotent stem cells and in cancer is only beginning to be revealed. We therefore use this evidence to advocate for more comprehensive analysis of Nanog in the context of disease, development, and regeneration.
    Stem Cells 07/2013; DOI:10.1002/stem.1384 · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human Nanog1 is a 305-amino acid (aa) homeodomain-containing transcription factor critical for the pluripotency of embryonic stem (ES) and embryonal carcinoma (EC) cells. Somatic cancer cells predominantly express a retrogene homolog of Nanog1 called NanogP8, which is ∼99% similar to Nanog at the aa level. Although the predicted M.W of Nanog1/NanogP8 is ∼35 kD, both have been reported to migrate, on Western blotting (WB), at apparent molecular masses of 29-80 kD. Whether all these reported protein bands represent authentic Nanog proteins is unclear. Furthermore, detailed biochemical studies on Nanog1/NanogpP8 have been lacking. By combining WB using 8 anti-Nanog1 antibodies, immunoprecipitation, mass spectrometry, and studies using recombinant proteins, here we provide direct evidence that the Nanog1 protein in NTERA-2 EC cells exists as multiple M.W species from ∼22 kD to 100 kD with a major 42 kD band detectable on WB. We then demonstrate that recombinant NanogP8 (rNanogP8) proteins made in bacteria using cDNAs from multiple cancer cells also migrate, on denaturing SDS-PAGE, at ∼28 kD to 180 kD. Interestingly, different anti-Nanog1 antibodies exhibit differential reactivity towards rNanogP8 proteins, which can spontaneously form high M.W protein species. Finally, we show that most long-term cultured cancer cell lines seem to express very low levels of or different endogenous NanogP8 protein that cannot be readily detected by immunoprecipitation. Altogether, the current study reveals unique biochemical properties of Nanog1 in EC cells and NanogP8 in somatic cancer cells.
    PLoS ONE 03/2014; 9(3):e90615. DOI:10.1371/journal.pone.0090615 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation and organ development. Interestingly, their homeodomain signature structure is important for both their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic distribution of these proteins is essential for their functions. We summarize information on (a) the roles of karyopherins for import and export of homeoproteins, (b) the regulation of their nuclear transport during development, and (c) the corresponding complexity of homeoprotein nucleocytoplasmic transport signals. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
    Biochimica et Biophysica Acta 09/2011; 1813(9):1654-62. DOI:10.1016/j.bbamcr.2011.01.013 · 4.66 Impact Factor