Article

Effects of 2,3,4 ',5-Tetrahydroxystilbene 2-O-beta-D-Glucoside on Vascular Endothelial Dysfunction in Atherogenic-Diet Rats

Department of Pharmacology, School of Medicine, Nantong University, Nantong, P. R. China.
Planta Medica (Impact Factor: 2.34). 05/2009; 75(11):1209-14. DOI: 10.1055/s-0029-1185540
Source: PubMed

ABSTRACT 2,3,4',5-Tetrahydroxystilbene 2- O-beta- D-glucoside (TSG), an active component extracted from Polygonum multiflorum, has been found to have an anti-atherosclerotic effect. The aim of this study was to investigate whether the TSG could prevent the development of atherosclerosis through influencing endothelial function in atherogenic-diet rats and to explore the possible mechanisms. Vascular endothelial dysfunction was assessed using isolated aortic ring preparation, transmission electron microscopy of the aorta, and levels of nitrate/nitrite (NOx) in serum and aorta. Endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA and protein expression were also measured. After 12 weeks treatment, TSG improved acetylcholine-induced endothelium-dependent relaxation, prevented intimal remodeling, inhibited the decreased NOx content in serum and aorta in atherogenic-diet rats. Furthermore, the observed decreased eNOS mRNA and protein expression and increased iNOS mRNA and protein expression in atherogenic-diet rats were attenuated by TSG treatment. These results suggest that TSG could restore vascular endothelial function, which may be related to its ability to prevent changes of eNOS and iNOS expression, leading to preservation of NO bioactivity.

0 Followers
 · 
219 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.
    The American Journal of Chinese Medicine 01/2015; 43(01):1-16. DOI:10.1142/S0192415X15500123 · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induction of pro-inflammatory factors is one of the characteristics of microglia activation and can be regulated by numerous active components of Chinese traditional herbs. Suppression of pro-inflammatory factors is beneficial to alleviate microglia-mediated cell injury. The present study aims to investigate the effect and possible mechanism of 2,3,4',5-tetrahydroxystilbene 2-O-beta-D-glucoside (TSG) on LPS-mediated induction of pro-inflammatory factors in microglia. Western blot, ELISA, and Hoechst 33258 were used to measure the protein expression, TNF-alpha/IL-6 content, and apoptotic nuclei, respectively. The mRNA level was measured by real time-PCR. Nitric oxide (NO) content, lactate dehydrogenase (LDH) content, and NF-kappaB binding activity were assayed by commercial kits. TSG reduced iNOS protein expression as well as TNF-alpha, IL-6, and NO content in LPS-stimulated BV-2 cells. TSG attenuated the increase in apoptotic nuclei, caspase-3 cleavage, and LDH content induced by BV-2 cell-derived conditioned medium in primary hippocampal neurons. Mechanistic studies showed that TSG reduced the mRNA level of iNOS, TNF-alpha, and IL-6. TSG failed to suppress IkappaB-alpha degradation, NF-kappaB phosphorylation and nuclear translocation, and ERK1/2, JNK, and p38 phosphorylation. TSG, however, markedly reduced the binding of NF-kappaB to its DNA element. Chromatin immunoprecipitation (ChIP) assays confirmed that TSG reduced NF-kappaB binding to the iNOS promoter. These findings were ascertained in primary microglia where the LPS-induced increase in iNOS expression, NO content, apoptotic nuclei, and NF-kappaB binding to its DNA element were diminished by TSG. These studies demonstrate that TSG attenuates LPS-mediated induction of pro-inflammatory factors in microglia through reducing the binding activity of NF-kappaB. This might help us to further understand the pharmacological role of TSG in inflammatory response in the central nervous system.
    Journal of Neuroinflammation 10/2013; 10(1):129. DOI:10.1186/1742-2094-10-129 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Polygoni Multiflori Radix, He-Shou-Wu in Chinese, is a widely used traditional Chinese medicine. Clinically, water decoction is the major application form of He-Shou-Wu. Therefore, simultaneous determination of bioactive compounds in water extract is very important for its quality control. RESULTS: A pressurized liquid extraction and short-end injection micellar electrokinetic chromatography (MEKC) were first developed for simultaneous determination of seven hydrophilic bioactive compounds in water extract of He-Shou-Wu. The influence of parameters, such as pH, concentration of phosphate, SDS and HP-beta-CD, capillary temperature and applied voltage, on the analysis were carefully investigated. Optimum separation was obtained within 14 min by using 50 mM phosphate buffer containing 90 mM SDS and 2% (m/v) HP-beta-CD (pH 2.5) at 15 kV and 20[degree sign]C. All calibration curves showed good linearity (R2>0.9978) within test ranges. The overall LOD and LOQ were lower than 2.0 mug/mL and 5.5 mug/mL, respectively. The RSDs for intra- and inter-day of seven analytes were less than 3.2% and 4.6%, and the recoveries were 97.0%-104.2%. CONCLUSION: The validated method was successfully applied to the analysis of He-Shou-Wu samples, which is helpful for its quality control.
    Chemistry Central Journal 03/2013; 7(1):45. DOI:10.1186/1752-153X-7-45 · 1.66 Impact Factor