Article

Soils and geomedicine.

Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway.
Environmental Geochemistry and Health (Impact Factor: 2.08). 05/2009; 31(5):523-35.
Source: PubMed

ABSTRACT Geomedicine is the science dealing with the influence of natural factors on the geographical distribution of problems in human and veterinary medicine. Discussions on potential harmful impacts on human and animal health related to soil chemistry are frequently focused on soil pollution. However, problems related to natural excess or deficiency of chemical substances may be even more important in a global perspective. Particularly problems related to trace element deficiencies in soils have been frequently reported in agricultural crops as well as in livestock. Deficiencies in plants are often observed for boron, copper, manganese, molybdenum, and zinc. In animals deficiency problems related to cobalt, copper, iodine, manganese, and selenium are well known. Toxicity problems in animals exposed to excess intake have also been reported, e.g., for copper, fluorine, and selenium. Humans are similar to mammals in their relations to trace elements and thus likely to develop corresponding problems as observed in domestic animals if their supply of food is local and dependent on soils providing trace element imbalances in food crops. In large parts of Africa, Asia, and Latin America, people depend on locally grown food, and geomedical problems are common in these parts of the world. Well-known examples are Keshan disease in China associated with selenium deficiency, large-scale arsenic poisoning in Bangladesh and adjacent parts of India, and iodine deficiency disorders in many countries. Not all essential elements are derived only from the soil minerals. Some trace elements such as boron, iodine, and selenium are supplied in significant amounts to soils by atmospheric transport from the marine environment, and deficiency problems associated with these elements are therefore generally less common in coastal areas than farther inland. For example, iodine deficiency disorders in humans are most common in areas situated far from the ocean. There is still a great need for further research on geomedical problems.

2 Bookmarks
 · 
246 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants can uptake potentially toxic elements from the soil and accumulate them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (Triticum aestivum L. and Zea mays L.) from a tannery district in North-East Italy were analyzed to determine the content of potentially harmful elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn and V). According to the national legislation, the area is contaminated by Cr, Ni, Cu, Zn, Cd and V. The distribution of contaminants along the soil profile shows a general tendency to metal accumulation at surface as expected for anthropogenically enriched sites. Major anthropogenic origin was detected for Cr, Ni (from industrial activities), Zn, Cu, Cd (from agriculture practices). Major nutrients (K, P and S) and some micronutrients (Cu, Zn, Mg and Mn) are easily absorbed and translocated, whilst other potentially toxic elements (Ca, Fe, Al, Cd, Cr, Ni, Pb and V) are not accumulated in the seeds of the two considered species. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Chromium concentrations in seeds and other aerial parts of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources (dust ingestion, water), there seems to be no health risk for animal breeding and population due to the consumption of wheat and maize grown in the area.
    Journal of Geochemical Exploration 07/2014; · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain.
    PLoS ONE 10/2014; 9(10):e109889. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objetivo. Revisar y analizar literatura sobre valores de selenio (Se) en suero y plasma hu-manos; describir algunas variaciones; obtener "valores de referencia" para los países de Europa y América Latina, y proporcionar un marco informativo para estudios futuros sobre el tema. Métodos. Se buscó información sobre niveles séricos o plasmáticos de Se en personas decla-radas "sanas" en la literatura científica. Se revisaron las bases LILACS, SciELO, PubMed, Medline. Se buscó información de cualquier fecha (hasta enero de 2010) e idioma disponibles. Se calcularon promedio aritmético y desviación estándar ponderados. Resultados. En la búsqueda para Europa se hallaron 161 informes publicados entre 1972 y 2009, con participación de 49 869 adultos sanos, 28 países y 8 regiones. El Se sérico/ plasmático varió entre 48,2 y 124,00 µg/L. Los valores ponderados continentales fueron 85,19 ± 14,58 (intervalo de confianza [IC] de 95% para promedio: 85,124–85,256). Los promedios por país, región y técnica de medición fueron estadísticamente diferentes, con diferencias sig-nificativas entre sexos y edades. Veintitrés de los estudios fueron en menores de 19 años de 10 países europeos. Los valores ponderados fueron 74,21 ± 9,50 µg/L (IC95% 73,95–74,46). Sobre América Latina hubo solo 11 datos. El Se sérico/plasmático fue 91,51 ± 18,78 µg/L en adultos; 93,25 ± 39,20 en menores de 15 años, y 130 ± 30 en recién nacidos menores de 25 horas. Conclusiones. Los valores de Se sérico/plasmático mostraron diferencia estadísticamente significativa por sexo y edad en Europa, fueron más altos en adultos y niños latinoamericanos que en europeos, pero los datos latinoamericanos se basan en pocas personas. La influencia de la técnica de medición de Se en suero/plasma se considera crítica. En América Latina se re-quieren estudios poblacionales adecuadamente planificados y diseñados para generar valores de referencia autóctonos sobre Se en suero/plasma. Selenio; suero; plasma; valores de referencia; Europa; América Latina. RESUMEN El selenio (Se) es un elemento no metal, en estado natural sólido y muy es-caso en la corteza terrestre, cuya concen-tración en humanos es determinada prin-cipalmente por los alimentos ingeridos y está regida por factores geoquímicos, geológicos y temporales (1–4). Ingresa a la cadena alimentaria, principalmente como selenometionina y selenocisteína, mediante el consumo de productos ani-males y vegetales (5, 6). Es esencial para casi todas las formas de vida conocidas y tiene múltiples funciones, como por ejemplo: 1) es parte integral del sitio ac-tivo de las enzimas antioxidantes funcio-nalmente activas (selenoenzimas: gluta-tión peroxidasa y tiorredoxin-reductasa), 2) induce apoptosis por mecanismo no conocido, 3) estimula el sistema inmuno-lógico, 4) interviene en el funcionamiento de la glándula tiroides, 5) modula la expresión de genes que codifican las selenoproteínas, 6) interviene para pro-ducir energía mitocondrial junto con la vitamina E, 7) estimula la producción de prostaglandinas y ubiquinona (coenzima Q10) y 8) contribuye a la fertilidad (1, 7–11). El Se eritrocitario es mayor que el plasmático y el sérico (relación 2:1), y estos dos últimos son similares (12, 13).

Full-text (3 Sources)

Download
277 Downloads
Available from
May 20, 2014