Chemoprevention of lung cancer.

Department of Medicine, VA Eastern Colorado Healthcare System, University of Colorado at Denver Health Sciences Center, Denver, Colorado 80220, USA.
Proceedings of the American Thoracic Society 05/2009; 6(2):187-93. DOI: 10.1513/pats.200807-067LC
Source: PubMed

ABSTRACT Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. While avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or inhibit the carcinogenic process and has been successfully applied to common malignancies other than lung. Despite previous studies in lung cancer chemoprevention failing to identify effective agents, our ability to determine higher risk populations and the understanding of lung tumor and pre-malignant biology continues to advance. Additional biomarkers of risk continue to be investigated and validated. The World Health Organization/International Association for the Study of Lung Cancer classification for lung cancer now recognizes distinct histologic lesions that can be reproducibly graded as precursors of non-small cell lung cancer. For example, carcinogenesis in the bronchial epithelium starts with normal epithelium and progresses through hyperplasia, metaplasia, dysplasia, and carcinoma in situ to invasive squamous cell cancer. Similar precursor lesions exist for adenocarcinoma, and these pre-malignant lesions are targeted by chemopreventive agents in current and future trials. At this time, chemopreventive agents can only be recommended as part of well-designed clinical trials, and multiple trials are currently in progress and additional trials are in the planning stages. This review will discuss the principles of chemoprevention, summarize the completed trials, and discuss ongoing and potential future trials with a focus on targeted pathways.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: In a variety of cancers there is evidence that specific regimens can prevent or significantly delay the development of cancer. Thus, for breast cancer (ER+) use of SERMs or aromatase inhibitors can substantially decrease tumor incidence. For cervical cancer, HPV vaccination will inhibit long term cancer incidence. For colon cancer, the second greatest cancer killer, administration of aspirin and other NSAIDs decreases advanced colon adenomas in Phase II trials and epidemiologic data support their ability to prevent colon cancer. To date prevention trials in the area of lung cancer have shown minimal efficacy. Areas covered: The paper examines and discusses in greater detail certain promising agents which the authors have tested either preclinically and or in early phase clinical trials. These agents include RXR agonists, EGFr inhibitors, NSAIDs and Triterpenoids. Other agents including glucocorticoids, pioglitazone and iloprost are briefly mentioned. In addition, the paper presents various types of potential Phase II lung cancer prevention trials and describes their strengths and weaknesses. The potential use of various biomarkers as endpoints in trials e.g. histopathology, non-specific biomarkers (e.g., Ki67, cyclin D expression, apoptosis) and molecular biomarkers (e.g. specific phosphorylated proteins, gene expression etc.) is presented. Finally, we examine at least one approach, the use of aerosols, which may diminish the systemic toxicity associated with certain of these agents. Expert Opinion: The manuscript presents: a) a number of promising agents which appear applicable to further Phase II prevention trials; b) approaches to defining potential preventive agents as well; c) approaches which might mitigate the side effects associated with potential agents most specifically the use of aerosols. Finally, we discuss biomarker studies both preclinical and clinical which might help support potential Phase II trials. The particular appeal to the preclinical studies is that they can be followed to a tumor endpoint. We hope that this will give the reader further background and allow one to appreciate the potential and some of the hurdles associated with lung cancer chemoprevention.
    Expert Opinion on Investigational Drugs 11/2012; · 4.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reduced rates of lung cancer have been observed in several occupational groups exposed to high levels of organic dusts contaminated by endotoxin. The underlying anti-neoplastic mechanism of endotoxin may be an increased secretion of endogenous anti-neoplastic mediators and activation of the toll-like receptors (TLR). A detoxified endotoxin derivative, Monophosphoryl Lipid A (MPL(®)) is marketed in Europe since 1999 as part of the adjuvant systems in allergy vaccines for treatment of allergic rhino-conjunctivitis and allergic asthma. Over 200,000 patients have used them to date (nearly 70% in Germany). Since detailed exposure (MPL(®) dose and timing of administration) and individual data are potentially available, an observational follow-up study could be conducted in Germany to investigate the protective effect of MPL(®) against cancer, comparing cancer incidence in two groups of patients with allergic rhinitis: those treated with allergoids plus MPL(®) and those treated with a vaccine including the same allergoids but not MPL(®). The protective effect of MPL(®) could be quantified in ever and never smokers. If this proposed observational study provides evidence of protective effects, MPL(®) could be immediately used as a chemo-preventive agent since it is already in use as adjuvant in human vaccines against cancer.
    Cancer epidemiology. 05/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of systemic chemotherapeutic drugs and molecular-targeted therapies in the treatment of patients with locally advanced or metastatic lung cancer has its limitations due to the associated acute and cumulative dose limiting toxicities and acquisition of drug resistance. Prevention and therapeutic intervention by dietary agents including nutraceuticals which are non-toxic, cost-effective, and physiologically bioavailable, are emerging approaches in lung cancer management. In this regard, silibinin, a natural flavonolignan, has been rigorously evaluated for the prevention and growth control of lung cancer through extensive in vitro and in vivo studies. Successful studies conducted so far, have established that silibinin is effective both alone and in combination with other agents (e.g., chemotherapeutic and epigenetic agents) in significantly inhibiting the growth of lung cancer cells. In vivo, its effects have been shown to be mediated through inhibition of proliferation, angiogenesis and epigenetic--related events. Therefore, the present review focuses on encompassing the efficacy and mechanisms of silibinin against lung cancer.
    Nutrition and Cancer 01/2013; 65(sup1):3-11. · 2.70 Impact Factor


Available from