Clearance of Pseudomonas aeruginosa from a Healthy Ocular Surface Involves Surfactant Protein D and Is Compromised by Bacterial Elastase in a Murine Null-Infection Model

School of Optometry, University of California, Berkeley, CA 94720-2020, USA.
Infection and immunity (Impact Factor: 4.16). 04/2009; 77(6):2392-8. DOI: 10.1128/IAI.00173-09
Source: PubMed

ABSTRACT Our previous studies showed that surfactant protein D (SP-D) is present in human tear fluid and that it can protect corneal epithelial cells against bacterial invasion. Here we developed a novel null-infection model to test the hypothesis that SP-D contributes to the clearance of viable Pseudomonas aeruginosa from the healthy ocular surface in vivo. Healthy corneas of Black Swiss mice were inoculated with 10(7) or 10(9) CFU of invasive (PAO1) or cytotoxic (6206) P. aeruginosa. Viable counts were performed on tear fluid collected at time points ranging from 3 to 14 h postinoculation. Healthy ocular surfaces cleared both P. aeruginosa strains efficiently, even when 10(9) CFU was used: e.g., <0.01% of the original inoculum was recoverable after 3 h. Preexposure of eyes to bacteria did not enhance clearance. Clearance of strain 6206 (low protease producer), but not strain PAO1 (high protease producer), was delayed in SP-D gene-targeted (SP-D(-/-)) knockout mice. A protease mutant of PAO1 (PAO1 lasA lasB aprA) was cleared more efficiently than wild-type PAO1, but this difference was negligible in SP-D(-/-) mice, which were less able to clear the protease mutant. Experiments to study mechanisms for these differences revealed that purified elastase could degrade tear fluid SP-D in vivo. Together, these data show that SP-D can contribute to the clearance of P. aeruginosa from the healthy ocular surface and that proteases can compromise that clearance. The data also suggest that SP-D degradation in vivo is a mechanism by which P. aeruginosa proteases could contribute to virulence.

Download full-text


Available from: David John Kowbel, Aug 15, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contact lens wear predisposes to Pseudomonas aeruginosa keratitis, but the mechanisms involved remain unclear. An in vivo model was used to study lens inoculation conditions enabling disease. Custom-made hydrogel contact lenses were fitted to rats after incubation in P. aeruginosa approximately 10(11) cfu/mL (3 hours) or approximately 10(3) cfu/mL (24 hours). Another group was inadvertently inoculated with a suction pen previously used with high inocula, but rinsed in ethanol and stored dry (6 months). Some corneas were tissue paper-blotted to cause fluorescein staining before lens fitting. Contralateral eyes were untreated. Twenty-four hours after disease detection, lenses were transferred to naive rats or examined by confocal microscopy before homogenization to quantify viable bacteria. After lens removal, corneas were washed to collect nonadherent bacteria and were analyzed by immunohistochemistry. All eyes challenged with unworn contaminated lenses developed keratitis after approximately 7 to 10 days. Disease delay and severity were unaffected by inoculum parameters or tissue blotting but occurred sooner with lenses transferred from infected eyes ( approximately 2 days). Worn lenses and corneal washes contained infecting bacteria. Posterior, not anterior, lens surfaces harbored P. aeruginosa biofilms that penetrated the lens matrix. Diseased corneas showed an infiltration of phagocytes and T-lymphocytes. P. aeruginosa induces keratitis in this lens-wearing model after a single inoculation. Delayed disease onset was interesting considering the greater keratitis risk during extended wear. Infection did not require the disruption of corneal barrier function before lens wear and occurred without exposure to lens care solutions. The data suggest that keratitis involves biofilm formation or other bacterial adaptations in vivo.
    Investigative ophthalmology & visual science 06/2010; 51(6):3100-6. DOI:10.1167/iovs.09-4593 · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sight-threatening microbial keratitis associated with contact lens wear remains a serious concern for patients, eye-care practitioners, and the contact lens industry. Several decades of research and some major advances in lens and solution technology have not resulted in a decline in disease incidence. Here, we offer a perspective on the complex pathogenesis of microbial keratitis, the factors that have prevented a better understanding of this disease, and new approaches being used to tackle this important clinical problem.
    Optometry and vision science: official publication of the American Academy of Optometry 08/2010; 87(8):613-4. DOI:10.1097/OPX.0b013e3181eeddf9 · 2.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms determining epithelial resistance versus susceptibility to microbial traversal in vivo remain poorly understood. Here, a novel murine model was used to explore factors influencing the corneal epithelial barrier to Pseudomonas aeruginosa penetration. Murine corneas were blotted with tissue paper before inoculation with green fluorescent protein-expressing P. aeruginosa. The impact of blotting on epithelial integrity was evaluated by susceptibility to fluorescein staining and histology. Using fluorescence imaging, blotted corneas were compared to nonblotted corneas for susceptibility to bacterial binding and epithelial penetration after 5 hours or were monitored for disease development. In some experiments, inoculation was performed ex vivo to exclude tear fluid or corneas were pretreated with EGTA to disrupt Ca(2+)-dependent factors. The role of surfactant protein D (SP-D), which inhibits P. aeruginosa cell invasion in vitro, was examined using knockout mice. Blotting enabled fluorescein penetration through the epithelium into the underlying stroma without obvious disruption to corneal morphology. Although blotting enabled bacterial binding to the otherwise adhesion-resistant epithelial surface, adherent bacteria did not penetrate the surface or initiate pathology. In contrast, bacteria penetrated blotted corneas after EGTA treatment and in SP-D knockouts. Visible disease occurred and progressed only in aged, blotted, and EGTA-treated, SP-D knockout mice. Neither fluorescein staining nor bacterial adhesion necessarily predict or enable corneal susceptibility to bacterial penetration or disease. Corneal epithelial defenses limiting traversal by adherent bacteria include EGTA-sensitive factors and SP-D. Understanding mechanisms modulating epithelial traversal by microbes could improve our understanding of susceptibility to infection and may indicate new strategies for preventing disease.
    Investigative ophthalmology & visual science 11/2010; 52(3):1368-77. DOI:10.1167/iovs.10-6125 · 3.66 Impact Factor
Show more