Article

Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer's Disease Neuroimaging Initiative (ADNI).

Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA.
NeuroImage (Impact Factor: 6.13). 06/2009; 45(4):1107-16. DOI: 10.1016/j.neuroimage.2008.12.072
Source: PubMed

ABSTRACT In mostly small single-center studies, Alzheimer's disease (AD) is associated with characteristic and progressive reductions in fluorodeoxyglucose positron emission tomography (PET) measurements of the regional cerebral metabolic rate for glucose (CMRgl). The AD Neuroimaging Initiative (ADNI) is acquiring FDG PET, volumetric magnetic resonance imaging, and other biomarker measurements in a large longitudinal multi-center study of initially mildly affected probable AD (pAD) patients, amnestic mild cognitive impairment (aMCI) patients, who are at increased AD risk, and cognitively normal controls (NC), and we are responsible for analyzing the PET images using statistical parametric mapping (SPM). Here we compare baseline CMRgl measurements from 74 pAD patients and 142 aMCI patients to those from 82 NC, we correlate CMRgl with categorical and continuous measures of clinical disease severity, and we compare apolipoprotein E (APOE) varepsilon4 carriers to non-carriers in each of these subject groups. In comparison with NC, the pAD and aMCI groups each had significantly lower CMRgl bilaterally in posterior cingulate, precuneus, parietotemporal and frontal cortex. Similar reductions were observed when categories of disease severity or lower Mini-Mental State Exam (MMSE) scores were correlated with lower CMRgl. However, when analyses were restricted to the pAD patients, lower MMSE scores were significantly correlated with lower left frontal and temporal CMRgl. These findings from a large, multi-site study support previous single-site findings, supports the characteristic pattern of baseline CMRgl reductions in AD and aMCI patients, as well as preferential anterior CMRgl reductions after the onset of AD dementia.

0 Bookmarks
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the launch in 2003 of the Alzheimer's Disease Neuroimaging Initiative (ADNI) in the USA, ever growing, similarly oriented consortia have been organized and assembled around the world. The various accomplishments of ADNI have contributed substantially to a better understanding of the underlying physiopathology of aging and Alzheimer's disease (AD). These accomplishments are basically predicated in the trinity of multimodality, standardization and sharing. This multimodality approach can now better identify those subjects with AD-specific traits that are more likely to present cognitive decline in the near future and that might represent the best candidates for smaller but more efficient therapeutic trials - trials that, through gained and shared knowledge, can be more focused on a specific target or a specific stage of the disease process. In summary, data generated from ADNI have helped elucidate some of the pathophysiological mechanisms underpinning aging and AD pathology, while contributing to the international effort in setting the groundwork for biomarker discovery and establishing standards for early diagnosis of AD.
    Alzheimer's Research and Therapy 10/2014; 6(5):62. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the neural basis of hallucinations Alzheimer's disease (AD) by applying voxel-based morphometry (VBM) to anatomical and functional data from the AD Neuroimaging Initiative. AD patients with hallucinations, based on the Neuropsychiatric Inventory (NPI-Q) (AD-hallu group; n = 39), were compared to AD patients without hallucinations matched for age, sex, educational level, handedness and MMSE (AD-c group; n = 39). Focal brain volume on MRI was analyzed and compared between the two groups according to the VBM method. We also performed voxel-level correlations between brain volume and hallucinations intensity. A similar paradigm was used for the PET analysis. "Core regions" (i.e. regions identified in both MRI and PET analyses, simply done by retaining the clusters obtained from the two analyses that are overlapping) were then determined. Regions with relative atrophy in association with hallucinations were: anterior part of the right insula, left superior frontal gyrus and lingual gyri. Regions with relative hypometabolism in association with hallucinations were a large right ventral and dorsolateral prefrontal area. "Core region" in association with hallucinations was the right anterior part of the insula. Correlations between intensity of hallucinations and brain volume were found in the right anterior insula, precentral gyrus, superior temporal gyrus, and left precuneus. Correlations between intensity of hallucinations and brain hypometabolism were found in the left midcingulate gyrus. We checked the neuropathological status and we found that the 4 patients autopsied in the AD-hallu group had the mixed pathology AD and Dementia with Lewy bodies (DLB). Neural basis of hallucinations in cognitive neurodegenerative diseases (AD or AD and DLB) include a right predominant anterior-posterior network, and the anterior insula as the core region. This study is coherent with the top-down/bottom-up hypotheses on hallucinations but also hypotheses of the key involvement of the anterior insula in hallucinations in cognitive neurodegenerative diseases.
    PLoS ONE 12/2014; 9(12):e114774. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An emerging issue in neuroimaging is to assess the diagnostic reliability of PET and its application in clinical practice. We aimed at assessing the accuracy of brain FDG-PET in discriminating patients with MCI due to Alzheimer's disease and healthy controls. Sixty-two patients with amnestic MCI and 109 healthy subjects recruited in five centers of the European AD Consortium were enrolled. Group analysis was performed by SPM8 to confirm metabolic differences. Discriminant analyses were then carried out using the mean FDG uptake values normalized to the cerebellum computed in 45 anatomical volumes of interest (VOIs) in each hemisphere (90 VOIs) as defined in the Automated Anatomical Labeling (AAL) Atlas and on 12 meta-VOIs, bilaterally, obtained merging VOIs with similar anatomo-functional characteristics. Further, asymmetry indexes were calculated for both datasets. Accuracy of discrimination by a Support Vector Machine and the AAL VOIs was tested against a validated method (PALZ). At the voxel level SMP8 showed a relative hypometabolism in the bilateral precuneus, and posterior cingulate, temporo-parietal and frontal cortices. Discriminant analysis classified subjects with an accuracy ranging between .91 and .83 as a function of data organization. The best values were obtained from a subset of 6 meta-VOIs plus 6 asymmetry values reaching an area under the ROC curve of .947, significantly larger than the one obtained by the PALZ score. High accuracy in discriminating MCI converters from healthy controls was reached by a non-linear classifier based on SVM applied on predefined anatomo-functional regions and inter-hemispheric asymmetries. Data pre-processing was automated and simplified by an in-house created Matlab-based script encouraging its routine clinical use. Further validation toward nonconverter MCI patients with adequately long follow-up is needed.
    NeuroImage: Clinical. 11/2014;

Full-text (2 Sources)

Download
42 Downloads
Available from
Jun 3, 2014