AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology

Academic Neurosurgery Unit, St. George's, University of London, London, UK.
Neuroscience (Impact Factor: 3.33). 05/2009; 161(3):764-72. DOI: 10.1016/j.neuroscience.2009.03.069
Source: PubMed

ABSTRACT The glial cell water channel aquaporin-4 (AQP4) plays an important role in brain edema, astrocyte migration, and neuronal excitability. Zhou et al. [Zhou J, Kong H, Hua X, Xiao M, Ding J, Hu G (2008) Altered blood-brain barrier integrity in adult aquaporin-4 knockout mice. Neuroreport 19:1-5] recently reported that AQP4 deletion significantly altered blood-brain barrier integrity and glial fibrillary acidic protein (GFAP) immunoreactivity in their AQP4 null mice. Here we describe a detailed characterization of baseline brain properties in our AQP4 null mice, including gross appearance, neuronal, astrocyte and oligodendrocyte characteristics, and blood-brain barrier integrity. Gross anatomical measurements included estimates of brain and ventricle size. Neurons, astrocytes and oligodendrocytes were assessed using the neuronal nuclear marker NeuN, the astrocyte marker GFAP, and the myelin stain Luxol Fast Blue. The blood-brain barrier was studied by electron microscopy and the horseradish peroxidase extravasation technique. There were no differences in brain and ventricle sizes between wild type and AQP4 null mice, nor were there differences in the cerebral cortical density of NeuN positive nuclei, perimicrovessel and glia limitans GFAP immunoreactivity, or the thickness and myelination of the corpus callosum. The ultrastructure of microvessels in the frontal cortex and caudate nucleus of wild type vs. AQP4 null mice was indistinguishable, with features including intact endothelial tight junctions, absence of perimicrovessel astrocyte foot process edema, and absence of horseradish peroxidase extravasation. In contrast to the report by Zhou et al. (2008), our data show that AQP4 deletion in mice does not produce major structural abnormalities in the brain.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39±4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23±3%, and Evans Blue extravasation was reduced by 31±2% (mean±SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Neuroscience Letters 11/2014; 584C:368-372. DOI:10.1016/j.neulet.2014.10.040 · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelial cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.
    Neural Regeneration Research 02/2013; 8(4):338-45. DOI:10.3969/j.issn.1673-5374.2013.04.006 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy (DMD) is a recessive hereditary form of muscular dystrophy caused by a mutation in the dystrophin gene on the X chromosome. Clinical observations show that in addition to progressive muscular degeneration, DMD is more often accompanied by neurocognitive symptoms and learning disabilities, especially in automatisation of reading, attention processes, and expressive language skills. Additionally, three studies reported a higher prevalence of epilepsy in DMD, suggesting that the absence of dystrophin might be related to increased CNS excitability. In this article, we aim to review current clinical and experimental evidence for a potential role of brain dystrophin in seizure generation. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 02/2015; 51. DOI:10.1016/j.neubiorev.2015.01.023 · 10.28 Impact Factor