The structure of Cryptococcus neoformans galactoxylomannan contains beta-D-glucuronic acid

Analytical Services/Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
Carbohydrate research (Impact Factor: 1.97). 04/2009; 344(7):915-20. DOI: 10.1016/j.carres.2009.03.003
Source: PubMed

ABSTRACT The structure of galactoxylomannan, a capsular polysaccharide from the opportunistic yeast Cryptococcus neoformans, was re-examined by NMR spectroscopy and GC-MS. The residue that is 3-linked to the side chain galactose and was previously assigned as beta-D-xylose [Vaishnav, V. V.; Bacon, B. E.; O'Neill, M.; Cherniak, R. Carbohydr. Res.1998, 306, 315-330] was determined to be beta-D-glucuronic acid. A revised structure for this polymer is presented, along with a proposal that this compound be termed glucuronoxylomannogalactan (GXMGal).


Available from: Tamara Doering, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we characterized the in vitro modulation of NETs (neutrophil extracellular traps) induced in human neutrophils by the opportunistic fungus Cryptococcus neoformans, evaluating the participation of capsular polysaccharides glucuronoxylomanan (GXM) and glucuronoxylomannogalactan (GXMGal) in this phenomenon. The mutant acapsular strain CAP67 and the capsular polysaccharide GXMGal induced NET production. In contrast, the wild-type strain and the major polysaccharide GXM did not induce NET release. In addition, C. neoformans and the capsular polysaccharide GXM inhibited PMA-induced NET release. Additionally, we observed that the NET-enriched supernatants induced through CAP67 yeasts showed fungicidal activity on the capsular strain, and neutrophil elastase, myeloperoxidase, collagenase and histones were the key components for the induction of NET fungicidal activity. The signaling pathways associated with NET induction through the CAP67 strain were dependent on reactive oxygen species (ROS) and peptidylarginine deiminase-4 (PAD-4). Neither polysaccharide induced ROS production however both molecules blocked the production of ROS through PMA-activated neutrophils. Taken together, the results demonstrate that C. neoformans and the capsular component GXM inhibit the production of NETs in human neutrophils. This mechanism indicates a potentially new and important modulation factor for this fungal pathogen.
    Scientific Reports 01/2015; 5:8008. DOI:10.1038/srep08008 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capsule is the most important virulence factor of the fungal pathogen Cryptococcus neoformans. This structure consists of highly hydrated polysaccharides, including glucuronoxylomannan (GXM), and galactoxylomannan (GalXM). It is also composed of mannoproteins (MPs) which corresponds to less than 1% of the capsular weight. Despite MPs being the minority and least studied components, four of these molecules with molecular masses of 115, 98, 88, and 84 kDa were identified and characterized as C. neoformans immunoreactive antigens involved in the pathogenesis, and are potential cryptococcosis vaccine candidates. With the aim to describe the adhesive property of MPs, we cloned and expressed the MP84, a mannoprotein with molecular weight of 84 kDa, on Pichia pastoris yeast, and performed interaction assays of C. neoformans with epithelial lung cells, in the presence or absence of capsule components. Two fungal strains, the wild type, NE-241, and a mutant, CAP67, deficient in GXM production, were used throughout this study. The adhesion assays were completed using epithelial lung cells, A549, and human prostate cancer cells, PC3, as a control. We observed that capsulated wild type (NE-241), and acapsular (CAP67) strains adhered significantly to A549 cells, compared with PC3 cells (p < 0.05). GXM inhibits the NE-241 adhesion, but not the CAP67. In contrast, CAP67 adhesion was only inhibited in the presence of MP84. These results demonstrate the involvement of MP in the adhesion of C. neoformans to epithelial lung cells. We conclude that this interaction possibly involves an adhesion-like interaction between MP on the fungal surface and the complementary receptor molecules on the epithelial cells.
    Frontiers in Cellular and Infection Microbiology 08/2014; 4:106. DOI:10.3389/fcimb.2014.00106 · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Regulatory T cells (Treg) play a critical role in the prevention of autoimmunity, and the suppressive activity of these cells is impaired in rheumatoid arthritis (RA). The aim of the present study was to investigate function and properties of Treg of RA patients in response to purified polysaccharide glucuronoxylomannogalactan (GXMGal). Methods Flow cytometry and western blot analysis were used to investigate the frequency, function and properties of Treg cells. Results GXMGal was able to: i) induce strong increase of FOXP3 on CD4+ T cells without affecting the number of CD4+CD25+FOXP3+ Treg cells with parallel increase in the percentage of non-conventional CD4+CD25−FOXP3+ Treg cells; ii) increase intracellular levels of TGF-β1 in CD4+CD25−FOXP3+ Treg cells and of IL-10 in both CD4+CD25+FOXP3+ and CD4+CD25−FOXP3+ Treg cells; iii) enhance the suppressive activity of CD4+CD25+FOXP3+ and CD4+CD25−FOXP3+ Treg cells in terms of inhibition of effector T cell activity and increased secretion of IL-10; iv) decrease Th1 response as demonstrated by inhibition of T-bet activation and down-regulation of IFN-γ and IL-12p70 production; v) decrease Th17 differentiation by down-regulating pSTAT3 activation and IL-17A, IL-23, IL-21, IL-22 and IL-6 production. Conclusion These data show that GXMGal improves Treg functions and increases the number and function of CD4+CD25−FOXP3+ Treg cells of RA patients. It is suggested that GXMGal may be potentially useful for restoring impaired Treg functions in autoimmune disorders and for developing Treg cell-based strategies for the treatment of these diseases.
    PLoS ONE 10/2014; 9(10):e111163. DOI:10.1371/journal.pone.0111163 · 3.53 Impact Factor

Similar Publications