Article

Sexual differences in the control of energy homeostasis.

Obesity Research Center, University of Cincinnati, Cincinnati, OH, USA.
Frontiers in Neuroendocrinology (Impact Factor: 7.58). 04/2009; 30(3):396-404. DOI: 10.1016/j.yfrne.2009.03.004
Source: PubMed

ABSTRACT The prevalence of obesity has reached epidemic proportion with enormous costs in both human lives and healthcare dollars spent. Obesity-related metabolic disorders are much lower in premenopausal women than men; however, there is a dramatic increase following menopause in women. The health risks associated with obesity vary depending on the location of adipose tissue. Adipose tissue distributed in the abdominal visceral carry a much greater risk for metabolic disorders than does adipose tissue distributed subcutaneously. There are distinct sex-dependent differences in the regional fat distribution, women carry more fat subcutaneously whereas men carry more fat viscerally. Males and females differ with respect to their regulation of energy homeostasis. Peripheral adiposity hormones such as leptin and insulin as well as sex hormones directly influence energy balance. Sexual dimorphisms in energy balance, body fat distribution, and the role sex hormones have in mediating these differences are the focus of this review.

Full-text

Available from: Haifei Shi, Aug 01, 2014
5 Followers
 · 
255 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gender identity is the sense one has of being male or female. Gender dysphoria (GD) refers to the distress caused by the incongruence between gender identity and biological sex in gender-nonconforming individuals. Cross-sex hormone therapy (CHT) aims at easing GD, improving well-being, and quality of life of gender-nonconforming individuals. This can be achieved by inducing and maintaining the desired-sex characteristics in accordance with the specific aspirations and expectations of each individual. Nevertheless, CHT can be associated with potentially serious long-term complications. Here, we review when, how, and how long to prescribe CHT to adult transsexuals as well as what to expect and monitor once it has been initiated. In recent years, transsexualism has become more and more recognized and depathologized. To manage GD, National and International Standards of Care have been established. Nevertheless, the needs of transgender patients can still be ignored or dismissed. Moreover, some questions remain unanswered because of the lack of specific retrospective or prospective studies on CHT. Education and culturally sensitive training must be supplied to healthcare professionals to overcome the existing issues on GD management and change the perspectives of transsexual people.
    Journal of endocrinological investigation 11/2014; 38(3). DOI:10.1007/s40618-014-0186-2 · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show that chronic high fat diet (HFD) feeding affects the hypothalamus of male but not female mice. In our study we demonstrate that palmitic acid and sphingolipids accumulate in the central nervous system of HFD-fed males. Additionally, we show that HFD-feeding reduces proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) thus reducing estrogen receptor α (ERα) and driving hypothalamic inflammation in male but not female mice. Hypothalamic inflammation correlates with markers of metabolic dysregulation as indicated by dysregulation in glucose intolerance and myocardial function. Lastly, we demonstrate that there are blockages in mitophagy and lipophagy in hypothalamic tissues in males. Our data suggest there is a sexually dimorphic response to chronic HDF exposure, females; despite gaining the same amount of body weight following HFD-feeding, appear to be protected from the adverse metabolic effects of the HFD.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin resistance (IR) is a complex trait with multiple genetic and environmental components. Confounded by large differences between the sexes, environment, and disease pathology, the genetic basis of IR has been difficult to dissect. Here we examine IR and related traits in a diverse population of more than 100 unique male and female inbred mouse strains after feeding a diet rich in fat and refined carbohydrates. Our results show dramatic variation in IR among strains of mice and widespread differences between sexes that are dependent on genotype. We uncover more than 15 genome-wide significant loci and validate a gene, Agpat5, associated with IR. We also integrate plasma metabolite levels and global gene expression from liver and adipose tissue to identify metabolite quantitative trait loci (mQTL) and expression QTL (eQTL), respectively. Our results provide a resource for analysis of interactions between diet, sex, and genetic background in IR. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 02/2015; 21(2):334-46. DOI:10.1016/j.cmet.2015.01.002 · 16.75 Impact Factor