Article

Correction: CDKN1C (p57) Is a Direct Target of EZH2 and Suppressed by Multiple Epigenetic Mechanisms in Breast Cancer Cells

Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore.
PLoS ONE (Impact Factor: 3.53). 02/2009; 4(4):e5011. DOI: 10.1371/journal.pone.0005011
Source: PubMed

ABSTRACT CDKN1C (encoding tumor suppressor p57(KIP2)) is a cyclin-dependent kinase (CDK) inhibitor whose family members are often transcriptionally downregulated in human cancer via promoter DNA methylation. In this study, we show that CDKN1C is repressed in breast cancer cells mainly through histone modifications. In particular, we show that CDKN1C is targeted by histone methyltransferase EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3), and can be strongly activated by inhibition of EZH2 in synergy with histone deacetylase inhibitor. Consistent with the overexpression of EZH2 in a variety of human cancers including breast cancer, CDKN1C in these cancers is downregulated, and breast tumors expressing low levels of CDKN1C are associated with a poor prognosis. We further show that assessing both EZH2 and CDKN1C expression levels as a measurement of EZH2 pathway activity provides a more predictive power of disease outcome than that achieved with EZH2 or CDKN1C alone. Taken together, our study reveals a novel epigenetic mechanism governing CDKN1C repression in breast cancer. Importantly, as a newly identified EZH2 target with prognostic value, it has implications in patient stratification for cancer therapeutic targeting EZH2-mediated gene repression.

Download full-text

Full-text

Available from: RK Murthy Karuturi, Jun 20, 2015
1 Follower
 · 
285 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classical and non-classical monocytes are two well-defined subsets of monocytes displaying distinct roles. They differentially express numerous genes relevant to their primary role. Using five independent transcriptomic microarray datasets, we ruled out several inconsistent genes and identified common genes consistently overexpressed either in classical or non-classical monocytes. One hundred and eight genes were significantly increased in classical monocytes and are involved in bacterial defense, inflammation and atherosclerosis. Whereas the 74 genes overexpressed in non-classical monocytes are involved in cytoskeletal dynamics and invasive properties for enhanced motility and infiltration. These signatures unravel the biological functions of monocyte subsets. HIGHLIGHTS We compared five transcriptomic GEO datasets of human monocyte subsets. 108 genes in classical and 74 genes in non-classical monocytes are upregulated. Upregulated genes in classical monocytes support anti-bacterial and inflammatory responses. Upregulated genes in non-classical monocytes support patrolling and infiltration functions.
    International Reviews Of Immunology 04/2014; DOI:10.3109/08830185.2014.902453 · 5.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance of cancer cells to chemotherapeutics and emerging targeted drugs is a devastating problem in the treatment of cancer patients. Multiple mechanisms contribute to drug resistance such as increased drug efflux, altered drug metabolism, secondary mutations in drug targets, and activation of downstream or parallel signal transduction pathways. The rapid kinetics, the reversibility of acquired drug resistance and the absence of genetic mutations suggest an epigenetic basis for drug insensitivity. Similar to the cellular variance seen in the human body, epigenetic mechanisms, through reversible histone modifications and DNA methylation patterns, generate a variety of transcriptional states resulting in a dynamic heterogeneous tumor cell population. Consequently, epigenomes favoring survival in the presence of a drug by aberrant transcription of drug transporters, DNA-repair enzymes and pro-apoptotic factors render cytotoxic and targeted drugs ineffective and allow selection of rare drug-resistant tumor cells. Recent advances in charting cancer genomes indeed strongly indicate a role for epigenetic regulators in driving cancer, which may result in the acquisition of additional (epi)genetic modifications leading to drug resistance. These observations have important clinical consequences as they provide an opportunity for "epigenetic drugs" to change reversible drug-resistance-associated epigenomes to prevent or reverse non-responsiveness to anti-cancer drugs.
    Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 02/2012; 15(1-2):21-38. DOI:10.1016/j.drup.2012.01.008 · 8.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both EZH2 and NF-κB contribute to aggressive breast cancer, yet whether the two oncogenic factors have functional crosstalk in breast cancer is unknown. Here, we uncover an unexpected role of EZH2 in conferring the constitutive activation of NF-κB target gene expression in ER-negative basal-like breast cancer cells. This function of EZH2 is independent of its histone methyltransferase activity but requires the physical interaction with RelA/RelB to promote the expression of NF-κB targets. Intriguingly, EZH2 acts oppositely in ER-positive luminal-like breast cancer cells and represses NF-κB target gene expression by interacting with ER and directing repressive histone methylation on their promoters. Thus, EZH2 functions as a double-facet molecule in breast cancers, either as a transcriptional activator or repressor of NF-κB targets, depending on the cellular context. These findings reveal an additional mechanism by which EZH2 promotes breast cancer progression and underscore the need for developing context-specific strategy for therapeutic targeting of EZH2 in breast cancers.
    Molecular cell 09/2011; 43(5):798-810. DOI:10.1016/j.molcel.2011.08.011 · 14.46 Impact Factor

Similar Publications