Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding.

Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8807, USA.
The EMBO Journal (Impact Factor: 10.75). 05/2009; 28(9):1246-59. DOI: 10.1038/emboj.2009.83
Source: PubMed

ABSTRACT Covalent modification by small ubiquitin-related modifiers (SUMO) regulates p53 transcription activity through an undefined mechanism. Using reconstituted sumoylation components, we purified SUMO-1-conjugated p53 (Su-p53) to near homogeneity. Su-p53 exists in solution as a tetramer and interacts with p300 histone acetyltransferase as efficiently as the unmodified protein. Nevertheless, it fails to activate p53-dependent chromatin transcription because of its inability to bind DNA. With sequential modification assays, we found that sumoylation of p53 at K386 blocks subsequent acetylation by p300, whereas p300-acetylated p53 remains permissive for ensuing sumoylation at K386 and alleviates sumoylation-inhibited DNA binding. While preventing the free form of p53 from accessing its cognate sites, sumoylation fails to disengage prebound p53 from DNA. The sumoylation-deficient K386R protein, when expressed in p53-null cells, exhibits higher transcription activity and binds better to the endogenous p21 gene compared with the wild-type protein. These studies unravel a molecular mechanism underlying sumoylation-regulated p53 function and further uncover a new role of acetylation in antagonizing the inhibitory effect of sumoylation on p53 binding to DNA.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Carcinoma cells can transition from an epithelial-to-mesenchymal differentiation state through a process known as epithelial-mesenchymal transition (EMT). The process of EMT is characterized by alterations in the pattern of gene expression and is associated with a loss of cell polarity, an increase in invasiveness, and an increase in cells expressing cancer stem cell (CSC) markers. The reverse process of mesenchymal-to-epithelial transition (MET) can also occur, though the transitions characterizing EMT and MET can be incomplete. A growing number of transcription factors have been identified that influence the EMT/MET processes. Interestingly, SUMOylation regulates the functional activity of many of the transcription factors governing transitions between epithelial and mesenchymal states. In some cases, the transcription factor is a small ubiquitin-like modifier conjugated directly, thus altering its transcriptional activity or cell trafficking. In other cases, SUMOylation alters transcriptional mechanisms through secondary effects. This review explores the role of SUMOylation in controlling transcriptional mechanisms that regulate EMT/MET in cancer. Developing new drugs that specifically target SUMOylation offers a novel therapeutic approach to block tumor growth and metastasis. Cancer Res; 75(1); 1-5. ©2014 AACR. ©2014 American Association for Cancer Research.
    Cancer Research 12/2014; 75(1). DOI:10.1158/0008-5472.CAN-14-2824 · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tetramerization of p53 is crucial to exert its biological activity, and nucleolar disruption is sufficient to activate p53. We previously demonstrated that nucleolar stress induces translocation of the nucleolar protein MYBBP1A from the nucleolus to the nucleoplasm and enhances p53 activity. However, whether and how MYBBP1A regulates p53 tetramerization in response to nucleolar stress remain unclear. In this study, we demonstrated that MYBBP1A enhances p53 tetramerization, followed by acetylation under nucleolar stress. We found that MYBBP1A has two regions that directly bind to lysine residues of the p53 C-terminal regulatory domain. MYBBP1A formed a self-assembled complex that provided a molecular platform for p53 tetramerization and enhanced p300-mediated acetylation of the p53 tetramer. Moreover, our results show that MYBBP1A functions to enhance p53 tetramerization that is necessary for p53 activation, followed by cell death with actinomycin D treatment. Thus, we suggest that MYBBP1A plays a pivotal role in the cellular stress response.
    Journal of Biological Chemistry 12/2013; 289(8). DOI:10.1074/jbc.M113.474049 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modifications provide a fine-tuned control of protein function(s) in the cell. The well-known tumour suppressor p53 is subject to many post-translational modifications, which alter its activity, localization and stability, thus ultimately modulating its response to various forms of genotoxic stress. In this review, we focus on the role of recently discovered lysine-specific modifications of p53, methylation and acetylation in particular, and their effects on p53 activity in damaged cells. We also discuss a possibility of mutual influence of covalent modifications in the p53 and histone proteins located in the vicinity of p53 binding sites in chromatin and propose important ramifications stemming from this hypothesis.
    Oncotarget 10/2013; 4(10):1556-71. · 6.63 Impact Factor


Available from