Drzezga, A. et al. Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 72, 1487-1494

Department of Nuclear Medicine, Klinikum Rechts der Isar, Technischen Universität München, Ismaninger Str. 22, D-81675 München/Munich, Germany.
Neurology (Impact Factor: 8.29). 05/2009; 72(17):1487-94. DOI: 10.1212/WNL.0b013e3181a2e8d0
Source: PubMed


To examine the influence of the APOE genotype on levels of beta-amyloid (Abeta) plaque load and atrophy in patients with Alzheimer disease (AD) in vivo.
Thirty-two patients with moderate AD were divided into carriers and noncarriers of the epsilon4 allele. These groups were matched for age, disease duration, education, and cognitive impairment. In all subjects, [11C]PIB-PET was performed for measurement of cerebral Abeta plaque deposition and cranial MRI for the assessment of gray matter volume by voxel-based morphometry (VBM) and for correction of partial volume effects (PVE) in the PET data. Voxel-based comparisons (SPM5) were performed between patient groups and healthy control populations and completed with multiple regression analyses between imaging data and epsilon4 allele frequency.
Compared to controls, AD-typical patterns of [11C]PIB retention and atrophy were detected in both epsilon4-positive and epsilon4-negative patient groups. In direct comparison, significantly stronger and more extended [11C]PIB uptake was found in epsilon4-positive patients in bilateral temporoparietal and frontal cortex, surviving PVE correction. VBM analysis demonstrated comparable levels of atrophy in both patient groups. Regression analyses revealed a linear association between higher epsilon4 allele frequency and stronger temporoparietal Abeta plaque deposition, independently of other confounds. No major correlation between epsilon4 allele frequency and gray matter decrease was observed.
These results indicate that the epsilon4-positive APOE genotype not only represents a risk factor for Alzheimer disease (AD), but also results in higher levels of Abeta plaque deposition in epsilon4-positive patients with AD compared to age-matched epsilon4-negative patients with similar levels of cognitive impairment and brain atrophy. The potential role of Abeta plaque imaging for patient inclusion and follow-up in anti-amyloid therapy trials is strengthened by these findings.

28 Reads
  • Source
    • "Still, these data are hard to reconcile with recently reported results showing that genetically increasing human ApoE levels, regardless of isoform status, rather increased Aβ accumulation in transgenic mice [58] [59]. Neuroimaging studies add to the orchestra of conflicting data on the link between ApoE expression and brain amyloid load [60] [61] [62] [63]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A brief overview of the evidence for omega-3 fatty acids and, in particular, of docosahexaenoic acid (DHA), involvement in cognition and in dementia is given. Two studies are presented in this regard in which the key intervention is a DHA supplement. The fist, the MIDAS Study demonstrated that DHA can be of benefit for episodic memory in healthy adults with a mild memory complaint. The second, the ADCS AD trial found no benefit of DHA in the primary outcomes but found an intriguing benefit for cognitive score in ApoE4 negative allele patients. This leads to a consideration of the mechanisms of action and role of ApoE and its modulation by DHA. Given the fundamental role of ApoE in cellular lipid transport and metabolism in the brain and periphery, it is no surprise that ApoE affects n-3 PUFA brain function as well. It remains to be seen to what extent ApoE4 deleterious effect in AD is associated with n-3 PUFA-related cellular mechanisms in the brain and, more specifically, whether ApoE4 directly impairs the transport of DHA into the brain, as has been suggested.
    Prostaglandins Leukotrienes and Essential Fatty Acids 10/2014; 92. DOI:10.1016/j.plefa.2014.10.003 · 2.35 Impact Factor
  • Source
    • "The literature is, thus far, more consistent when it comes to amyloid imaging in older APOE4 carriers. Several studies have reported that healthy older APOE4 carriers are more likely to harbor amyloid plaques on imaging either with PIB or AV45 (Aizenstein et al. 2008; Drzezga et al. 2009; Morris et al. 2010; Reiman et al. 2009; Rodrigue et al. 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer’s disease (AD) is an increasingly prevalent, fatal neurodegenerative disease that has proven resistant, thus far, to all attempts to prevent it, forestall it, or slow its progression. The ε4 allele of the Apolipoprotein E gene (APOE4) is a potent genetic risk factor for sporadic and late-onset familial AD. While the link between APOE4 and AD is strong, many expected effects, like increasing the risk of conversion from MCI to AD, have not been widely replicable. One critical, and commonly overlooked, feature of the APOE4 link to AD is that several lines of evidence suggest it is far more pronounced in women than in men. Here we review previous literature on the APOE4 by gender interaction with a particular focus on imaging-related studies.
    Brain Imaging and Behavior 06/2014; 8(2). DOI:10.1007/s11682-013-9272-x · 4.60 Impact Factor
  • Source
    • "The effect of APOE genotype on amyloid deposition has been shown previously, including in middle-aged and older cognitively healthy adults, as well as patients with L-MCI and AD (Drzezga et al., 2009; Shaw et al., 2009; Morris et al., 2010; Fleisher et al., 2011; Tosun et al., 2011). Biochemically, APOE genotype has "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Our goal was to evaluate the association of APOE with amyloid deposition, cerebrospinal fluid levels (CSF) of Aβ, tau, and p-tau, brain atrophy, cognition and cognitive complaints in E-MCI patients and cognitively healthy older adults (HC) in the ADNI-2 cohort. Methods: Two-hundred and nine E-MCI and 123 HC participants from the ADNI-2 cohort were included. We evaluated the impact of diagnostic status (E-MCI vs. HC) and APOE ε4 status (ε4 positive vs. ε4 negative) on cortical amyloid deposition (AV-45/Florbetapir SUVR PET scans), brain atrophy (structural MRI scans processed using voxel-based morphometry and Freesurfer version 5.1), CSF levels of Aβ, tau, and p-tau, and cognitive performance and complaints. Results: E-MCI participants showed significantly impaired cognition, higher levels of cognitive complaints, greater levels of tau and p-tau, and subcortical and cortical atrophy relative to HC participants (p < 0.05). Cortical amyloid deposition and CSF levels of Aβ were significantly associated with APOE ε4 status but not E-MCI diagnosis, with ε4 positive participants showing more amyloid deposition and lower levels of CSF Aβ than ε4 negative participants. Other effects of APOE ε4 status on cognition and CSF tau levels were also observed. Conclusions: APOE ε4 status is associated with amyloid accumulation and lower CSF Aβ, as well as increased CSF tau levels in early prodromal stages of AD (E-MCI) and HC. Alternatively, neurodegeneration, cognitive impairment, and increased complaints are primarily associated with a diagnosis of E-MCI. These findings underscore the importance of considering APOE genotype when evaluating biomarkers in early stages of disease.
    Frontiers in Aging Neuroscience 04/2013; 5:11. DOI:10.3389/fnagi.2013.00011 · 4.00 Impact Factor
Show more

Similar Publications