Article

Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings

Division of Psychological Medicine and Psychiatry, Institute of Psychiatry, King's College London, UK.
Psychological Medicine (Impact Factor: 5.43). 05/2009; 39(11):1763-77. DOI: 10.1017/S0033291709005315
Source: PubMed

ABSTRACT The potential effects of antipsychotic drugs on brain structure represent a key factor in understanding neuroanatomical changes in psychosis. This review addresses two issues: (1) do antipsychotic medications induce changes in total or regional human brain volumes and (2) do such effects depend on antipsychotic type?
A systematic review of studies reporting structural brain magnetic resonance imaging (MRI) measures: (1) directly in association with antipsychotic use; and (2) in patients receiving lifetime treatment with antipsychotics in comparison with drug-naive patients or healthy controls. We searched Medline and EMBASE databases using the medical subject heading terms: 'antipsychotics' AND 'brain' AND (MRI NOT functional). The search included studies published up to 31 January 2007. Wherever possible, we reported the effect size of the difference observed.
Thirty-three studies met our inclusion criteria. The results suggest that antipsychotics act regionally rather than globally on the brain. These volumetric changes are of a greater magnitude in association with typical than with atypical antipsychotic use. Indeed, there is evidence of a specific effect of antipsychotic type on the basal ganglia, with typicals specifically increasing the volume of these structures. Differential effects of antipsychotic type may also be present on the thalamus and the cortex, but data on these and other brain areas are more equivocal.
Antipsychotic treatment potentially contributes to the brain structural changes observed in psychosis. Future research should take into account these potential effects, and use adequate sample sizes, to allow improved interpretation of neuroimaging findings in these disorders.

Download full-text

Full-text

Available from: Paola Dazzan, Apr 10, 2015
1 Follower
 · 
238 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies on longitudinal brain volume changes in patients with early-onset psychosis (EOP) are particularly valuable for understanding the neurobiological basis of brain abnormalities associated with psychosis. However, findings have not been consistent across studies in this population. We aimed to conduct a meta-analysis on progressive brain volume changes in children and adolescents with EOP. A systematic literature search of magnetic resonance imaging (MRI) studies comparing longitudinal brain volume changes in children and adolescents with EOP and healthy controls was conducted. The annualized rates of relative change in brain volume by region of interest (ROI) were used as raw data for the meta-analysis. The effect of age, sex, duration of illness, and specific diagnosis on volume change was also evaluated. Five original studies with 156 EOP patients (mean age at baseline MRI in the five studies ranged from 13.3 to 16.6years, 67.31% males) and 163 age- and sex-matched healthy controls, with a mean duration of follow-up of 2.46years (range 2.02-3.40), were included. Frontal gray matter (GM) was the only region in which significant differences in volume change over time were found between patients and controls (Hedges' g -0.435, 95% confidence interval (CI): -0.678 to -0.193, p<0.001). Younger age at baseline MRI was associated with greater loss of temporal GM volume over time in patients as compared with controls (p=0.005). Within patients, a diagnosis of schizophrenia was related to greater occipital GM volume loss over time (p=0.001). Compared with healthy individuals, EOP patients show greater progressive frontal GM loss over the first few years after illness onset. Age at baseline MRI and diagnosis of schizophrenia appear to be significant moderators of particular specific brain volume changes. Copyright © 2014 Elsevier B.V. All rights reserved.
    Schizophrenia Research 12/2014; DOI:10.1016/j.schres.2014.12.022 · 4.43 Impact Factor
  • Source
    11/2013; 32(3):145. DOI:10.5566/ias.v32.p145-153
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disconnection in white matter (WM) pathway and alterations in gray matter (GM) structure have been hypothesized as pathogenesis in schizophrenia. However, the relationship between the abnormal WM integrity and the alteration of GM in anatomically connected areas remains uncertain. Moreover, the potential influence of antipsychotic medication on WM anisotropy and cortical morphology was not excluded in previous studies. In this study, a total number of 34 subjects were enrolled, including 17 medicated-naïve chronic schizophrenia patients and 17 healthy controls. Tract-based spatial statistics (TBSS) were applied to investigate the level of WM integrity. The FreeSurfer surface-based analysis was used to determine GM volume, cortical thickness and the surface area of GM regions which corresponded to abnormal WM fiber tracts. We observed that patients possessed lower fractional anisotropy (FA) values in the left inferior fronto-occipital fasciculus (IFOF) and left inferior longitudinal fasciculus (ILF), along with smaller GM volume and cortical thinning in temporal lobe than the healthy controls, which reflected the underlying WM and GM disruption that contributed to the disease. In the patient population, the lower connectivity of ILF and IFOF was positively associated with cortical thickness in left lateral orbitofrontal cortex, superior temporal gyrus and lingual gyrus in males, and positively correlated with GM volume in left lateral orbitofrontal cortex in females. On the other hand, it was negatively correlated with cortical area of middle temporal gyrus in males and temporal pole in females respectively, but not when genders were combined. These findings suggested that abnormal WM integrity and anatomical correspondence of GM alterations in schizophrenia were interdependent on gender-separated analysis in patients with schizophrenia. Moreover, combining TBSS and FreeSurfer might be a useful method to provide significant insight into interacting processes related to WM fiber tracts and GM changes in schizophrenia.
    Magnetic Resonance Imaging 10/2013; 32(1). DOI:10.1016/j.mri.2013.08.004 · 2.02 Impact Factor