Article

The influence of the mechanical environment on remodelling of the patellar tendon.

St Mary's Hospital, Praed Street, Paddington, London W2 1NY, UK.
Journal of Bone and Joint Surgery - British Volume (Impact Factor: 2.69). 05/2009; 91(4):557-64. DOI: 10.1302/0301-620X.91B4.21580
Source: PubMed

ABSTRACT An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons. The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment.

0 Bookmarks
 · 
54 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterotopic mineralization may result in tendon weakness, but effects on other biomechanical responses have not been reported. We used a needle injury, which accelerates spontaneous mineralization of murine Achilles tendons, to test two hypotheses: that injured tendons would demonstrate altered biomechanical responses; and that unilateral injury would accelerate mineralization bilaterally. Mice underwent left hind (LH) injury (I; n = 11) and were euthanized after 20 weeks along with non-injured controls (C; n = 9). All hind limbs were examined by micro computed tomography followed by biomechanical testing (I = 7 and C = 6). No differences were found in the biomechanical responses of injured tendons compared with controls. However, the right hind (RH) tendons contralateral to the LH injury exhibited greater static creep strain and total creep strain compared with those LH tendons (p ≤ 0.045) and RH tendons from controls (p ≤ 0.043). RH limb lesions of injured mice were three times larger compared with controls (p = 0.030). Therefore, despite extensive mineralization, changes to the responses we measured were limited or absent 20 weeks postinjury. These results also suggest that bilateral occurrence should be considered where tendon mineralization is identified clinically. This experimental system may be useful to study the mechanisms of bilateral new bone formation in tendinopathy and other conditions. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res XX:XXX-XXX, 2013.
    Journal of Orthopaedic Research 06/2013; · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration “phenotypes”: endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. Clin. Anat., 2014. © 2014 Wiley Periodicals, Inc.
    Clinical Anatomy 04/2014; · 1.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tendon injuries vary from acute rupture to chronic tendinopathy. For an optimal treatment of either condition, a profound knowledge is essential. Therefore, this article shall give an overview of physiology, biology, and pathology of tendon healing and state of the art in tendon bioengineering. For a preferably comprehensive survey, the current literature listed in PubMed and published in English peer-reviewed journals (March 2013) was systematically reviewed for tendon healing and tendon bioengineering including cytokine modulation, autologous sources of growth factors, biomaterials, gene therapy, and cell-based therapy. No differentiation was made between clinical and preclinical in vitro investigations. Tendon healing happens in certain stadiums of inflammation, formation, and remodelling. An additional process of "collagen recycling" close to the healing site has been described recently. With increasing comprehension of physiology and pathology of tendon healing, several promising approaches in tendon bioengineering using growth factors, biomaterials, gene therapy, or cell-based therapy are described. However, only some of these are already used routinely in clinics. Strong and resistant tendons are crucial for a healthy musculoskeletal system. The new approaches in tendon bioengineering are promising to aid physiological tendon healing and thus resulting in a stronger and more resistant tendon after injury. The growing knowledge in this field will need to be further taken into clinical studies so that especially those patients with prolonged courses, revision surgery, or chronic tendinopathy and high-demanding patients, i.e., professional athletes would benefit. LEVEL OF EVIDENCE: II.
    Knee Surgery Sports Traumatology Arthroscopy 09/2013; · 2.68 Impact Factor