Neuroprotective Secreted Amyloid Precursor Protein Acts by Disrupting Amyloid Precursor Protein Dimers

Laboratory for Molecular and Cellular Systems, Department of Neurophysiology and Sensory Physiology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
Journal of Biological Chemistry (Impact Factor: 4.57). 04/2009; 284(22):15016-25. DOI: 10.1074/jbc.M808755200
Source: PubMed


The amyloid precursor protein (APP) is implied both in cell growth and differentiation and in neurodegenerative processes in Alzheimer disease. Regulated proteolysis of APP generates biologically active fragments such as the neuroprotective secreted ectodomain sAPPalpha and the neurotoxic beta-amyloid peptide. Furthermore, it has been suggested that the intact transmembrane APP plays a signaling role, which might be important for both normal synaptic plasticity and neuronal dysfunction in dementia. To understand APP signaling, we tracked single molecules of APP using quantum dots and quantitated APP homodimerization using fluorescence lifetime imaging microscopy for the detection of Förster resonance energy transfer in living neuroblastoma cells. Using selective labeling with synthetic fluorophores, we show that the dimerization of APP is considerably higher at the plasma membrane than in intracellular membranes. Heparan sulfate significantly contributes to the almost complete dimerization of APP at the plasma membrane. Importantly, this technique for the first time structurally defines the initiation of APP signaling by binding of a relevant physiological extracellular ligand; our results indicate APP as receptor for neuroprotective sAPPalpha, as sAPPalpha binding disrupts APP dimers, and this disruption of APP dimers by sAPPalpha is necessary for the protection of neuroblastoma cells against starvation-induced cell death. Only cells expressing reversibly dimerized wild-type, but not covalently dimerized mutant APP are protected by sAPPalpha. These findings suggest a potentially beneficial effect of increasing sAPPalpha production or disrupting APP dimers for neuronal survival.

10 Reads
  • Source
    • "One such BACE1 substrate is APP, which has been hypothesized to play a role in neuroprotection [29], cell adhesion [99, 117], neurite outgrowth (reviewed in [104]), synapse formation or maintenance [80], as well as regulating synaptic transmission [43]. APP is transported to the neuronal terminal [52, 97] where it is likely processed by BACE1 and γ-secretase to generate secreted APP ectodomain (APPsβ), APP C-terminal fragment (β-CTF), and Aβ [40, 64, 96, 106, 118]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: β-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the β-secretase that initiates Aβ production in Alzheimer’s disease (AD). BACE1 levels are increased in AD, which could contribute to pathogenesis, yet the mechanism of BACE1 elevation is unclear. Furthermore, the normal function of BACE1 is poorly understood. We localized BACE1 in the brain at both the light and electron microscopic levels to gain insight into normal and pathophysiologic roles of BACE1 in health and AD, respectively. Our findings provide the first ultrastructural evidence that BACE1 localizes to vesicles (likely endosomes) in normal hippocampal mossy fiber terminals of both non-transgenic and APP transgenic (5XFAD) mouse brains. In some instances, BACE1-positive vesicles were located near active zones, implying a function for BACE1 at the synapse. In addition, BACE1 accumulated in swollen dystrophic autophagosome-poor presynaptic terminals surrounding amyloid plaques in 5XFAD cortex and hippocampus. Importantly, accumulations of BACE1 and APP co-localized in presynaptic dystrophies, implying increased BACE1 processing of APP in peri-plaque regions. In primary cortical neuron cultures, treatment with the lysosomal protease inhibitor leupeptin caused BACE1 levels to increase; however, exposure of neurons to the autophagy inducer trehalose did not reduce BACE1 levels. This suggests that BACE1 is degraded by lysosomes but not by autophagy. Our results imply that BACE1 elevation in AD could be linked to decreased lysosomal degradation of BACE1 within dystrophic presynaptic terminals. Elevated BACE1 and APP levels in plaque-associated presynaptic dystrophies could increase local peri-plaque Aβ generation and accelerate amyloid plaque growth in AD. Electronic supplementary material The online version of this article (doi:10.1007/s00401-013-1152-3) contains supplementary material, which is available to authorized users.
    Acta Neuropathologica 07/2013; 126(3). DOI:10.1007/s00401-013-1152-3 · 10.76 Impact Factor
  • Source
    • "APP anchors cytoplasmic polyadenylation element binding factor (CPEB) to membranes and promotes polyadenylation-induced translation (Cao et al., 2005). sAPPα increases de novo protein synthesis (Claasen et al., 2009), enhances LTP (Taylor et al., 2008), shifts the frequency-dependency for induction of LTD (Ishida et al., 1997), and disrupts APP dimers at the plasma membrane (Gralle et al., 2009). While there is only a 17-amino acid difference between the differentially processed N-terminal fragments, sAPPα possesses synaptotrophic and neuroprotective activities while sAPPβ can be toxic (Zheng and Koo, 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS) is a debilitating genetic disorder with no cure and few therapeutic options. Excessive signaling through metabotropic glutamate receptor 5 in FXS leads to increased translation of numerous synaptic proteins and exaggerated long-term depression. Two of the overexpressed proteins are amyloid-beta protein precursor (APP) and its metabolite amyloid-beta, which have been well-studied in Alzheimer's disease (AD). Here we discus the possibility that pharmaceuticals under study for the modulation of these proteins in AD might be viable therapeutic strategies for FXS. Specifically, a recently identified acetyltransferase inhibitor that reduces the levels and activity of β-site APP cleaving enzyme (BACE-1) has strong potential to attenuate BACE-1 activity and maintain homeostatic levels APP catabolites in FXS.
    Frontiers in Cellular Neuroscience 05/2013; 7:77. DOI:10.3389/fncel.2013.00077 · 4.29 Impact Factor
  • Source
    • "Together, these findings indicated that sAPP modulates cellular activities involved in cognitive processes, including the functionality and maintenance of synapses and neurites. Interestingly, sAPP binds to and regulates holo-APP dimerization at the plasma membrane, an event required for the neuroprotective effect of sAPP against starvation-induced cell death (Gralle et al., 2009). Whereas sAPP appears to have a beneficial effect to neurons, in vitro overexpression of C99 (a membrane-tethered APP fragment generated after b-secretase cleavage) promotes neuronal degeneration (Yankner et al., 1989; Yoshikawa et al., 1992). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
    Neurobiology of aging 05/2013; 34(11). DOI:10.1016/j.neurobiolaging.2013.04.021 · 5.01 Impact Factor
Show more