Article

Adeno-Associated Virus Vector-Mediated Expression and Constitutive Secretion of Galanin Suppresses Limbic Seizure Activity

UNC Gene Therapy Center, Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Neurotherapeutics (Impact Factor: 3.88). 05/2009; 6(2):307-11. DOI: 10.1016/j.nurt.2009.01.004
Source: PubMed

ABSTRACT Theoretically, gene therapy techniques offer an attractive alternative treatment option for intractable, focal epilepsies. Although logical gene therapy targets include excitatory and inhibitory receptors, variable viral vector tropism interjects an uncertainty as to the direction of change, seizure suppression, or seizure sensitization. To circumvent this therapeutic liability, adeno-associated virus (AAV) vectors have been constructed where the gene product is constitutively secreted from the transduced cell. Using AAV vectors, the fibronectin secretory signal sequence (FIB) was placed in front of the coding sequence for green fluorescent protein or the active portion of the neuroactive peptide galanin (GAL). Subsequent studies showed that these vectors supported expression and constitutive secretion of these gene products from transfected cells in vitro. More importantly, upon transduction in vivo, AAV-FIB-GAL vectors significantly attenuated focal seizure sensitivity, and this seizure attenuation could be controlled in vivo by using a tetracycline-regulated promoter. The expression and constitutive secretion of green fluorescent protein, or the expression of GAL alone, exerted no effect on focal seizure sensitivity. Moreover, unilateral infusion of the AAV-FIB-GAL vectors into the hippocampus prevented kainic acid-induced hilar cell death. With regard to limbic seizures, bilateral infusion of AAV-FIB-GAL vectors into the piriform cortex prevented both behavioral and localized electrographic seizure activity after the peripheral administration of kainic acid. Also, when rats were electrically kindled to class V seizure activity, subsequent infusion of AAV-FIB-GAL proved capable of significantly elevating the seizure initiation threshold. Thus, these studies clearly demonstrate the anti-seizure effectiveness of AAV vector-mediated expression and constitutive secretion of galanin.

Download full-text

Full-text

Available from: Thomas J Mccown, Jun 26, 2014
0 Followers
 · 
84 Views
 · 
21 Downloads
  • Source
    • "There are three classes of galanin-signaling receptors, and she pointed out in the early studies that infusion of galanin into the CNS significantly attenuated seizure activity in a number of animal models [11] [12] [13]. Proof-of-concept studies are in the public domain, and dose escalation studies to determine the upper limit that can be delivered are completed [14] [15] [16] [17]. Currently, the company is evaluating a delivery system with Medtronic. "
    [Show abstract] [Hide abstract]
    ABSTRACT: On June 5 and 6, 2014, the Epilepsy Foundation held its 4th Biennial Epilepsy Pipeline Update Conference, an initiative of the Epilepsy Therapy Project, which showcased the most promising epilepsy innovations from health-care companies and academic laboratories dedicated to pioneering and advancing drugs, biologics, technologies, devices, and diagnostics for epilepsy. Speakers and attendees included emerging biotech and medical technology companies, major pharmaceutical and device companies, as well as investigators and innovators at the cutting-edge of epilepsy. The program included panel discussions on collaboration between small and large companies, how to get products in need of funding to the marketplace, who is currently funding epilepsy and CNS innovation, and how the NIH facilitates early-stage drug development. Finally, the conference featured the third annual "Shark Tank" competition. The presentations are summarized in this paper, which is followed by a compilation of the meeting poster abstracts. Copyright © 2015 Elsevier Inc. All rights reserved.
    Epilepsy & Behavior 04/2015; 46. DOI:10.1016/j.yebeh.2015.02.033 · 2.06 Impact Factor
  • Source
    • "The neuropeptide Galanin (Gal) was also downregulated at the mRNA level by early CLA administration, independently of length, duration and via of supplementation. This peptide exerts a wide range of effects, not only in the central nervous system [32] but also in the enteric nervous system [33]. Although Gal is mainly produced by neurons, it has been described that lymphocytes and macrophages can also synthesize it at a lower level [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip(®) Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life.
    BMC Genomics 04/2011; 12(1):182. DOI:10.1186/1471-2164-12-182 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Convection-enhanced delivery (CED) is a novel drug-delivery technique that uses positive hydrostatic pressure to deliver a fluid containing a therapeutic substance by bulk flow directly into the interstitial space within a localized region of the brain parenchyma. CED circumvents the blood-brain barrier and provides a wider, more homogenous distribution than bolus deposition (focal injection) or other diffusion-based delivery approaches. A potential use of CED is for the local delivery of antiseizure agents, which would provide an epilepsy treatment approach that avoids the systemic toxicities of orally administered antiepileptic drugs and bystander effects on nonepileptic brain regions. Recent studies have demonstrated that brief CED infusions of nondiffusible peptides that inhibit the release of excitatory neurotransmitters, including omega-conotoxins and botulinum neurotoxins, can produce long-lasting (weeks to months) seizure protection in the rat amygdala-kindling model. Seizure protection is obtainable without detectable neurological or behavioral side effects. Although conventional diffusible antiepileptic drugs do confer seizure protection when administered locally by CED, the effect is transitory. CED is a potential approach for seizure protection that could represent an alternative to resective surgery in the treatment of focal epilepsies that are resistant to orally-administered antiepileptic drugs. The prolonged duration of action of nondiffusible toxins would allow seizure protection to be maintained chronically with infrequent reinfusions.
    Neurotherapeutics 05/2009; 6(2):344-51. DOI:10.1016/j.nurt.2009.01.017 · 3.88 Impact Factor
Show more