Sequence-specific physical properties of African green monkey alpha-satellite DNA contribute to centromeric heterochromatin formation

Department Biophysical Engineering, Faculty of Science and Technology and Mesa+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands. m.bussiek@utwente.
Journal of Structural Biology (Impact Factor: 3.37). 04/2009; 167(1):36-46. DOI: 10.1016/j.jsb.2009.03.010
Source: PubMed

ABSTRACT Satellite DNA, a major component of eukaryotic centromeric heterochromatin, is potentially associated with the processes ensuring the faithful segregation of the genetic material during cell division. Structural properties of alpha-satellite DNA (AS) from African green monkey (AGM) were studied. Atomic force microscopy imaging showed smaller end-to-end distances of AS fragments than would be expected for the persistence length of random sequence DNA. The apparent persistence length of the AS was determined as 35nm. Gel-electrophoresis indicated only a weak contribution of intrinsic curvature to the DNA conformations suggesting an additional contribution of an elevated bending flexibility to the reduced end-to-end distances. Next, the force-extension behavior of the naked AS and in complex with nucleosomes was studied using optical tweezers. The naked AS showed a reduced overstretching transition force (-18% the value determined for random DNA) and higher forces required to straighten the DNA. Finally, reconstituted AS nucleosomes disrupted at significantly higher forces as compared with random DNA nucleosomes which is probably due to structural properties of the AS which stabilize the nucleosomes. The data support that the AS plays a role in the formation of centromeric heterochromatin due to specific structural properties and suggest that a relatively higher mechanical stability of nucleosomes is important in AGM-AS chromatin.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism.
    International Journal of Molecular Sciences 04/2010; 11(4):1557-79. DOI:10.3390/ijms11041557 · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Repetitive DNA sequences, including tandem and dispersed repeats, comprise a large portion of eukaryotic genomes and are important for gene regulation, sex chromosome differentiation, and karyotype evolution. In Parodontidae, only the repetitive DNAs WAp and pPh2004 and rDNAs were previously studied using fluorescence in situ hybridization. This study aimed to build a library of repetitive DNA in Parodontidae. We isolated 40 clones using Cot-1; 17 of these clones exhibited similarity to repetitive DNA sequences, including satellites, minisatellites, microsatellites, and class I and class II transposable elements (TEs), from Danio rerio and other organisms. The physical mapping of the clones to chromosomes revealed the presence of a satellite DNA, a Helitron element, and degenerate short interspersed element (SINE), long interspersed element (LINE), and tc1-mariner elements on the sex chromosomes. Some clones exhibited dispersed signals; other sequences were not detected. The 5S rDNA was detected on an autosomal pair. These elements likely function in the molecular degeneration of the W chromosome in Parodontidae. Thus, the location of these elements on the chromosomes is important for understanding the function of these repetitive DNAs and for integrative studies with genome sequencing. The presented data demonstrate that an intensive invasion of TEs occurred during W sex chromosome differentiation in the Parodontidae.
    Zebrafish 08/2014; DOI:10.1089/zeb.2014.1013 · 1.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA containing a sequence that generates a local curvature exhibits a pronounced retardation in electrophoretic mobility. Various theoretical models have been proposed to explain relationship between DNA structural features and migration anomaly. Here we studied the capacity of 15 static wedge bending models to predict electrophoretic behaviour of 69 satellite monomers derived from four divergent families. All monomers exhibited retarded mobility in PAGE corresponding to retardation factors ranging 1.02-1.54. The curvature varied both within and across the groups and correlated with the number, position and lengths of A-tracts. Two dinucleotide models provided strong correlation between gel mobility and curvature prediction; two trinucleotide models were satisfactory while remaining dinucleotide models provided intermediate results with reliable prediction for subsets of sequences only. In some cases, similarly shaped molecules exhibited relatively large differences in mobility and vice versa. Generally less accurate predictions were obtained in groups containing less homogeneous sequences possessing distinct structural features. In conclusion, relatively universal theoretical models were identified suitable for the analysis of natural sequences known to harbour relatively moderate curvature. These models could be potentially applied to genome wide studies. However, in silico predictions should be viewed in context of experimental measurement of intrinsic DNA curvature. This article is protected by copyright. All rights reserved.
    Electrophoresis 09/2013; 34(17). DOI:10.1002/elps.201300227 · 3.16 Impact Factor