Article

Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.

Hubrecht Institute and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands.
Nature (Impact Factor: 42.35). 04/2009; 459(7244):262-5. DOI: 10.1038/nature07935
Source: PubMed

ABSTRACT The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5(+) stem cells at the bottoms of small-intestinal crypts. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5(+) stem cells can also initiate these cryptvillus organoids. Tracing experiments indicate that the Lgr5(+) stem-cell hierarchy is maintained in organoids. We conclude that intestinal cryptvillus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.

Download full-text

Full-text

Available from: Daniel E. Stange, Jun 29, 2015
2 Followers
 · 
385 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian adult small intestinal epithelium is a rapidly self-renewing tissue that is maintained by a pool of cycling stem cells intermingled with Paneth cells at the base of crypts. These crypt base stem cells exclusively express Lgr5 and require Wnt3 or, in its absence, Wnt2b. However, the Frizzled (Fzd) receptor that transmits these Wnt signals is unknown. We determined the expression profile of Fzd receptors in Lgr5(+) stem cells, their immediate daughter cells, and Paneth cells. Here we show Fzd7 is enriched in Lgr5(+) stem cells and binds Wnt3 and Wnt2b. Conditional deletion of the Fzd7 gene in adult intestinal epithelium leads to stem cell loss in vivo and organoid death in vitro. Crypts of conventional Fzd7 knockout mice show decreased basal Wnt signaling and impaired capacity to regenerate the epithelium following deleterious insult. These observations indicate that Fzd7 is required for robust Wnt-dependent processes in Lgr5(+) intestinal stem cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Stem Cell Reports 04/2015; 4(5). DOI:10.1016/j.stemcr.2015.03.003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three-dimensional (3D) in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
    Neoplasia (New York, N.Y.) 01/2015; 58(1). DOI:10.1016/j.neo.2014.12.004 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of β-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and β-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal. © 2015. Published by The Company of Biologists Ltd.
    Development 01/2015; 142:41-50. DOI:10.1242/dev.107714 · 6.27 Impact Factor