Article

Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos.

Departments of Biochemistry and Molecular Biology , Michigan State University, East Lansing, Michigan 48824-1312, USA.
Plant physiology (Impact Factor: 7.39). 04/2009; 150(1):55-72. DOI: 10.1104/pp.109.137737
Source: PubMed

ABSTRACT The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [(14)C]acetate and [(14)C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [(14)C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.

0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the importance of three enzymes, LPCAT, PDCT and PDAT, involved in acyl turnover in phosphatidylcholine in order to explore the possibility of further increasing erucic acid (22:1) content in Crambe seed oil. The complete coding sequences of LPCAT1-1 and LPCAT1-2 encoding lysophosphatidylcholine acyltransferase (LPCAT), PDCT1 and PDCT2 encoding phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), and PDAT encoding phospholipid:diacylglycerol acyltransferase (PDAT) were cloned from developing Crambe seeds. The alignment of deduced amino acid sequences displayed a high similarity to the Arabidopsis homologs. Transgenic lines expressing RNA interference (RNAi) targeting either single or double genes showed significant changes in the fatty acid composition of seed oil. An increase in oleic acid (18:1) was observed, to varying degrees, in all of the transgenic lines, and a cumulative effect of increased 18:1 was shown in the LPCAT-PDCT double-gene RNAi. However, LPCAT single-gene RNAi led to a decrease in 22:1 accumulation, while PDCT or PDAT single-gene RNAi had no obvious effect on the level of 22:1. In agreement with the abovementioned oil phenotypes, the transcript levels of the target genes in these transgenic lines were generally reduced compared to wild-type levels. In this paper, we discuss the potential to further increase the 22:1 content in Crambe seed oil through downregulation of these genes in combination with fatty acid elongase and desaturases.
    Lipids 03/2015; 50:407-416. DOI:10.1007/s11745-015-4004-1 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic cytosolic acyl-CoA-binding proteins (ACBPs) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein-lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis while AtACBP5 is expressed later. Isothermal titration calorimetry (ITC) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry, and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong β-glucuronidase (GUS) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison to the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds.
    Bioscience Reports 11/2014; 35(1). DOI:10.1042/BSR20140139 · 2.85 Impact Factor
  • Source

Full-text

Download
46 Downloads
Available from
May 31, 2014