A UV-sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage

Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2009; 106(15):6209-14. DOI: 10.1073/pnas.0902113106
Source: PubMed

ABSTRACT UV-sensitive syndrome (UV(S)S) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UV(S)S is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UV(S)S patient (UV(S)S1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UV(S)S1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UV(s)S patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS), however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene adduct (dG(N2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is removed exclusively by the CSA- and CSB-dependent pathway. In contrast, contribution of the CS proteins to the removal of two other transcription-blocking DNA lesions - N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG(C8)-AAF) and cyclobutane thymine-thymine (TT) dimer - is only minor (TT dimer) or none (dG(C8)-AAF). The unique properties of dG(N2)-AAF identify this adduct as a prototype for a new class of DNA lesions that escape the alternative global genome repair and could be critical for the CS pathogenesis.
    PLoS ONE 04/2014; 9(4):e94405. DOI:10.1371/journal.pone.0094405 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of DNA repair defects in human syndromes, initially in xeroderma pigmentosum (XP) but later in many others, led to striking observations on the association of molecular defects and patients' clinical phenotypes. For example, patients with syndromes resulting from defective nucleotide excision repair (NER) or translesion synthesis (TLS) present high levels of skin cancer in areas exposed to sunlight. However, some defects in NER also lead to more severe symptoms, such as developmental and neurological impairment and signs of premature aging. Skin cancer in XP patients is clearly associated with increased mutagenesis and genomic instability, reflecting the defective repair of DNA lesions. By analogy, more severe symptoms observed in NER-defective patients have also been associated with defective repair, likely involving cell death after transcription blockage of damaged templates. Endogenously induced DNA lesions, particularly through oxidative stress, have been identified as responsible for these severe pathologies. However, this association is not that clear and alternative explanations have been proposed. Despite high levels of exposure to intense sunlight, patients from tropical countries receive little attention or care, which likely also reflects the lack of understanding of how DNA damage causes cancer and premature aging.
    Genetics and Molecular Biology 03/2014; 37(1 Suppl):220-233. DOI:10.1590/S1415-47572014000200008 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype-phenotype correlations of transcription-coupled repair disorders.
    Nature Reviews Molecular Cell Biology 06/2014; 15(7):465-81. DOI:10.1038/nrm3822 · 36.46 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014