Article

Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer's type (SDAT).

Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA.
European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology (Impact Factor: 3.68). 04/2009; 19(9):636-47. DOI:10.1016/j.euroneuro.2009.02.002
Source: PubMed

ABSTRACT Recent evidence indicates that curcumin (CUR), the principal curcuminoid of turmeric, exhibits antioxidant potential and protects the brain against various oxidative stressors. The aim of the present study was to examine the modulating impacts of CUR against cognitive deficits and oxidative damage in intracerebroventricular-streptozotocin (ICV-STZ) infused rats. Rats were injected bilaterally with ICV-STZ (3 mg/kg), while sham rats received the same volume of vehicle and then supplemented with CUR (80 mg/kg) for three weeks. After two weeks of ICV-STZ infusion, rats were tested for cognitive performance using passive avoidance and water maze tasks and then sacrificed for biochemical and histopathological assays. ICV-STZ rats showed significant cognitive deficits, which were significantly improved by CUR supplementation. CUR supplementation significantly augmented increased 4-hydroxynonenal (4-HNE) and malonaldehyde (MDA), thiobarbituric reactive substances (TBARS), hydrogen peroxide (H2O2), protein carbonyl (PC) and oxidized glutathione (GSSG); decreased levels of reduced glutathione (GSH) and its dependent enzymes (Glutathione peroxidase [GPx] and glutathione reductase [GR]) in the hippocampus and cerebral cortex; and increased choline acetyltransferase (ChAT) activity in the hippocampus of ICV-STZ rats. The study suggests that CUR is effective in preventing cognitive deficits, and might be beneficial for the treatment of sporadic dementia of Alzheimer's type (SDAT).

0 0
 · 
0 Bookmarks
 · 
92 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Rising neurodegenerative and depressive disease prevalence combined with the lack of effective pharmaceutical treatments and dangerous side effects, has created an urgent need for the development of effective therapies. Considering that these disorders are multifactorial in origin, treatments designed to interfere at different mechanistic levels may be more effective than the traditional single-targeted pharmacological concepts. To that end, an experimental diet composed of zinc, melatonin, curcumin, piperine, eicosapentaenoic acid (EPA, 20:5, n-3), docosahexaenoic acid (DHA, 22:6, n-3), uridine, and choline was formulated. This diet was tested on the olfactory bulbectomized rat (OBX), an established animal model of depression and cognitive decline. The ingredients of the diet have been individually shown to attenuate glutamate excitoxicity, exert potent anti-oxidant/anti-inflammatory properties, and improve synaptogenesis; processes that all have been implicated in neurodegenerative diseases and in the cognitive deficits following OBX in rodents. Dietary treatment started 2 weeks before OBX surgery, continuing for 6 weeks in total. The diet attenuated OBX-induced cognitive and behavioral deficits, except long-term spatial memory. Ameliorating effects of the diet extended to the control animals. Furthermore, the experimental diet reduced hippocampal atrophy and decreased the peripheral immune activation in the OBX rats. The ameliorating effects of the diet on the OBX-induced changes were comparable to those of the NMDA receptor antagonist, memantine, a drug used for the management of Alzheimer's disease. This proof-of-concept study suggests that a diet, which simultaneously targets multiple disease etiologies, can prevent/impede the development of a neurodegenerative and depressive disorders and the concomitant cognitive deficits.
    Neuropharmacology 11/2013; · 4.11 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: As demographics in developed nations shift towards an aging population, neurodegenerative pathologies, especially dementias such as Alzheimer's disease, pose one of the largest challenges to the modern health care system. Since there is yet no cure for dementia, there is great pressure to discover potential therapeutics for these diseases. One popular candidate is curcumin or diferuloylmethane, a polyphenolic compound that is the main curcuminoid found in Curcuma longa (family Zingiberaceae). In recent years, curcumin has been reported to possess anti-amyloidogenic, anti-inflammatory, anti-oxidative, and metal chelating properties that may result in potential neuroprotective effects. Particularly, the hydrophobicity of the curcumin molecule hints at the possibility of blood-brain barrier penetration and accumulation in the brain. However, curcumin exhibits extremely low bioavailability, mainly due to its poor aqueous solubility, poor stability in solution, and rapid intestinal first-pass and hepatic metabolism. Despite the many efforts that are currently being made to improve the bioavailability of curcumin, brain concentration of curcumin remains low. Furthermore, although many have reported that curcumin possesses a relatively low toxicity profile, curcumin applied at high doses, which is not uncommon practice in many in vivo and clinical studies, may present certain dangers that in our opinion have not been addressed sufficiently. Herein, the neuroprotective potential of curcumin, with emphasis on Alzheimer's disease, as well as its limitations of curcumin will be discussed in detail.
    Current Medicinal Chemistry 08/2013; · 4.07 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Since the second half of the last century, this traditional medicine has attracted the attention of scientists from multiple disciplines to elucidate its pharmacological properties. Of significant interest is curcumin's role to treat neurodegenerative diseases including Alzheimer's disease (AD), and Parkinson's disease (PD) and malignancy. These diseases all share an inflammatory basis, involving increased cellular reactive oxygen species (ROS) accumulation and oxidative damage to lipids, nucleic acids and proteins. The therapeutic benefits of curcumin for these neurodegenerative diseases appear multifactorial via regulation of transcription factors, cytokines and enzymes associated with (Nuclear factor kappa beta) NFκB activity. This review describes the historical use of curcumin in medicine, its chemistry, stability and biological activities, including curcumin's anti-cancer, anti-microbial, anti-oxidant, and anti-inflammatory properties. The review further discusses the pharmacology of curcumin and provides new perspectives on its therapeutic potential and limitations. Especially, the review focuses in detail on the effectiveness of curcumin and its mechanism of actions in treating neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and brain malignancies.
    Current Neuropharmacology 07/2013; 11(4):338-78. · 2.03 Impact Factor