PIB binding in aged primate brain: Enrichment of high-affinity sites in humans with Alzheimer's disease

Division of Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
Neurobiology of aging (Impact Factor: 5.01). 04/2009; 32(2):223-34. DOI: 10.1016/j.neurobiolaging.2009.02.011
Source: PubMed


Aged nonhuman primates accumulate large amounts of human-sequence amyloid β (Aβ) in the brain, yet they do not manifest the full phenotype of Alzheimer's disease (AD). To assess the biophysical properties of Aβ that might govern its pathogenic potential in humans and nonhuman primates, we incubated the benzothiazole imaging agent Pittsburgh Compound B (PIB) with cortical tissue homogenates from normal aged humans, humans with AD, and from aged squirrel monkeys, rhesus monkeys, and chimpanzees with cerebral Aβ-amyloidosis. Relative to humans with AD, high-affinity PIB binding is markedly reduced in cortical extracts from aged nonhuman primates containing levels of insoluble Aβ similar to those in AD. The high-affinity binding of PIB may be selective for a pathologic, human-specific conformation of multimeric Aβ, and thus could be a useful experimental tool for clarifying the unique predisposition of humans to Alzheimer's disease.

Full-text preview

Available from:
  • Source
    • "Only increased numbers of cortical plaques usually associated with increased amounts of cortical soluble and nonplaque-associated insoluble (so called dispersible) Ab aggregates in Ab p h a s e4a n d5c a s e s[15] [16] permitted significant [ 18 F]flutemetamol retention in the cortex. The assumption of a threshold for Ab pathology to be passed for detection with amyloid PET is in agreement with the negative PIB amyloid imaging results in aged monkeys with amyloid plaques that may not exhibit sufficient degrees of amyloid pathology (as Ab phase 1–3 cases in this study) to allow detection by amyloid PET methods [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid positron emission tomography (PET) has become an important tool to identify amyloid-β (Aβ) pathology in Alzheimer's disease (AD) patients. Here, we determined the diagnostic value of the amyloid PET tracer [(18)F]flutemetamol in relation to Aβ pathology at autopsy. [(18)F]flutemetamol PET was carried out in a cohort of 68 patients included in a [(18)F]flutemetamol amyloid PET imaging end-of-life study (GE067-007). At autopsy, AD pathology was determined and Aβ plaque pathology was classified into phases of its regional distribution (0-5). [(18)F]flutemetamol PET was universally positive in cases with advanced stage postmortem Aβ pathology (Aβ phases 4 and 5). Negative amyloid PET was universally observed in nondemented or non-AD dementia cases with initial Aβ phases 1 and 2, whereas 33.3 % of the phase 3 cases were positive. [(18)F]flutemetamol amyloid PET detects primarily advanced stages of Aβ pathology in preclinical and symptomatic AD cases. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 06/2015; 120(8). DOI:10.1016/j.jalz.2015.05.018 · 12.41 Impact Factor
  • Source
    • "The specific binding properties of [11C]PiB are still controversial, as is the correlation with the post-mortem histology of tissue taken from disease models established in animals (Klunk et al., 2005a; Toyama et al., 2005; Bacskai et al., 2007; Rosen et al., 2011). The tracer is known to pass the blood-brain barrier with comparative ease, which renders the uptake sensitive to blood flow differences, as well as amyloid load (Blomquist et al., 2008; Gjedde et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dogs with Canine Cognitive Dysfunction (CCD) accumulate amyloid beta (Aβ) in the brain. As the cognitive decline and neuropathology of these old dogs share features with Alzheimer's disease (AD), the relation between Aβ and cognitive decline in animal models of cognitive decline is of interest to the understanding of AD. However, the sensitivity of the biomarker Pittsburgh Compound B (PiB) to the presence of Aβ in humans and in other mammalian species is in doubt. To test the sensitivity and assess the distribution of Aβ in dog brain, we mapped the brains of dogs with signs of CCD (n = 16) and a control group (n = 4) of healthy dogs with radioactively labeled PiB ([(11)C]PiB). Structural magnetic resonance imaging brain scans were obtained from each dog. Tracer washout analysis yielded parametric maps of PiB retention in brain. In the CCD group, dogs had significant retention of [(11)C]PiB in the cerebellum, compared to the cerebral cortex. Retention in the cerebellum is at variance with evidence from brains of humans with AD. To confirm the lack of sensitivity, we stained two dog brains with the immunohistochemical marker 6E10, which is sensitive to the presence of both Aβ and Aβ precursor protein (AβPP). The 6E10 stain revealed intracellular material positive for Aβ or AβPP, or both, in Purkinje cells. The brains of the two groups of dogs did not have significantly different patterns of [(11)C]PiB binding, suggesting that the material detected with 6E10 is AβPP rather than Aβ. As the comparison with the histological images revealed no correlation between the [(11)C]PiB and Aβ and AβPP deposits in post-mortem brain, the marked intracellular staining implies intracellular involvement of amyloid processing in the dog brain. We conclude that PET maps of [(11)C]PiB retention in brain of dogs with CCD fundamentally differ from the images obtained in most humans with AD.
    Frontiers in Aging Neuroscience 12/2013; 5:99. DOI:10.3389/fnagi.2013.00099 · 4.00 Impact Factor
  • Source
    • "There are both high (nM) and low (μM) affinity PiB binding sites on synthetic and biological Aβ fibrils [33]. The low affinity site is more abundant in synthetic fibrils, fibrillar Aβ from transgenic mice, and the Aβ found in the brains of aged non-human primates [52] [66]. A large proportion of the PiB binding under our assay conditions (1 nM 3 H-PiB) is to the high affinity site [33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of imaging reagents is of considerable interest in the Alzheimer's disease (AD) field. Some of these, such as Pittsburgh Compound B (PiB), were designed to bind to the amyloid-β peptide (Aβ), the major component of amyloid deposits in the AD brain. Although these agents were designed for imaging amyloid deposits in vivo, a major avenue of evaluation relies on postmortem cross validation with established indices of AD pathology. In this study, we evaluated changes in the postmortem binding of PiB and its relationship to other aspects of Aβ-related pathology in a series of AD cases and age-matched controls. We also examined cases of preclinical AD (PCAD) and amnestic mild cognitive impairment (MCI), both considered early points in the AD continuum. PiB binding was found to increase with the progression of the disease and paralleled increases in the less soluble forms of Aβ, including SDS-stable Aβ oligomers. Increased PiB binding and its relationship to Aβ was only significant in a brain region vulnerable to the development of AD pathology (the superior and middle temporal gyri) but not in an unaffected region (cerebellum). This implies that the amyloid deposited in disease-affected regions may possess fundamental, brain region specific characteristics that may not as yet be fully appreciated. These data support the idea that PiB is a useful diagnostic tool for AD, particularly in the early stage of the disease, and also show that PiB could be a useful agent for the discovery of novel disease-related properties of amyloid.
    Journal of Alzheimer's disease: JAD 07/2012; 32(1):127-38. DOI:10.3233/JAD-2012-120655 · 4.15 Impact Factor
Show more