Article

Nuclear localization of Chfr is crucial for its checkpoint function.

School of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Korea.
Moleculer Cells (Impact Factor: 2.24). 04/2009; 27(3):359-63. DOI: 10.1007/s10059-009-0046-7
Source: PubMed

ABSTRACT Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.

0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer is the fourth leading cause of cancer-related deaths among women in Denmark, largely due to the advanced stage at diagnosis in most patients. Approximately 90% of ovarian cancers originate from the single-layered ovarian surface epithelium (OSE). Defects in the primary cilium, a solitary sensory organelle in most cells types including OSE, were recently implicated in tumorigenesis, mainly due to deregulation of ciliary signaling pathways such as Hedgehog (Hh) signaling. However, a possible link between primary cilia and epithelial ovarian cancer has not previously been investigated. The presence of primary cilia was analyzed in sections of fixed human ovarian tissue as well as in cultures of normal human ovarian surface epithelium (OSE) cells and two human OSE-derived cancer cell lines. We also used immunofluorescence microscopy, western blotting, RT-PCR and siRNA to investigate ciliary signaling pathways in these cells. We show that ovarian cancer cells display significantly reduced numbers of primary cilia. The reduction in ciliation frequency in these cells was not due to a failure to enter growth arrest, and correlated with persistent centrosomal localization of aurora A kinase (AURA). Further, we demonstrate that ovarian cancer cells have deregulated Hh signaling and platelet-derived growth factor receptor alpha (PDGFRα) expression and that promotion of ciliary formation/stability by AURA siRNA depletion decreases Hh signaling in ovarian cancer cells. Lastly, we show that the tumor suppressor protein and negative regulator of AURA, checkpoint with forkhead-associated and ring finger domains (CHFR), localizes to the centrosome/primary cilium axis. Our results suggest that primary cilia play a role in maintaining OSE homeostasis and that the low frequency of primary cilia in cancer OSE cells may result in part from over-expression of AURA, leading to aberrant Hh signaling and ovarian tumorigenesis.
    08/2012; 1(1):15. DOI:10.1186/2046-2530-1-15
  • [Show abstract] [Hide abstract]
    ABSTRACT: CHFR ubiquitin ligase acts as a checkpoint upon DNA damage and its functional inactivation is one of key characteristics of tumor development and metastasis. Despite the crucial role in maintaining genome integrity and cell cycle progression, little is known how CHFR stability is regulated. Here, we showed that CHFR is covalently modified by SUMO-1 at lysine 663 and subsequently destabilized by ubiquitin-proteasome system. While CHFR(K663R) substitution mutation does not alter its subcellular localization, SUMOylation-defective CHFR(K663R)-stable cells exhibit substantial growth suppression due to the increased stability of CHFR(K663R). Moreover, protein level of CHFR, not CHFR(K663R), is rapidly declined under SUMOylation- promoting conditions, and SENP2 deSUMOylating enzyme reverses its SUMO-modification. Collectively, we demonstrated that CHFR stability is regulated by SUMOylation-dependent proteasomal degradation. Therefore, our study underscores the importance of CHFR SUMOylation as a new regulatory mechanism of CHFR and highlights the emerging role of SUMOylation in modulating protein stability.
    Biochemical and Biophysical Research Communications 11/2012; 430(1). DOI:10.1016/j.bbrc.2012.10.111 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CHFR (Checkpoint with Forkhead-associated and RING finger domains) has been implicated in a checkpoint regulating entry into mitosis. However, the details underlying its roles and regulation are unclear due to conflicting lines of evidence supporting different notions of its functions. We provide here an overview of how CHFR is thought to contribute towards regulating mitotic entry and present possible explanations for contradictory observations published on the functions and regulation of CHFR. Furthermore, we survey key data showing correlations between promoter hypermethylation or down-regulation of CHFR and cancers, with a view on the likely reasons why different extents of correlations have been reported. Lastly, we explore the possibilities of exploiting CHFR promoter hypermethylation status in diagnostics and therapeutics for cancer patients. With keen interest currently focused on the association between hypermethylation of CHFR and cancers, details of how CHFR functions require further study to reveal how its absence might possibly contribute to tumorigenesis.
    Cellular and Molecular Life Sciences CMLS 12/2011; 69(10):1669-87. DOI:10.1007/s00018-011-0892-2 · 5.86 Impact Factor