Article

Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein.

Servicio de Microbiología and Unidad de Investigación, Hospital Son Dureta, Instituto Universitario de Investigación en Ciencias de la Salud Palma de Mallorca, Spain.
PLoS Pathogens (Impact Factor: 8.14). 04/2009; 5(3):e1000353. DOI: 10.1371/journal.ppat.1000353
Source: PubMed

ABSTRACT It has long been recognized that the modification of penicillin-binding proteins (PBPs) to reduce their affinity for beta-lactams is an important mechanism (target modification) by which Gram-positive cocci acquire antibiotic resistance. Among Gram-negative rods (GNR), however, this mechanism has been considered unusual, and restricted to clinically irrelevant laboratory mutants for most species. Using as a model Pseudomonas aeruginosa, high up on the list of pathogens causing life-threatening infections in hospitalized patients worldwide, we show that PBPs may also play a major role in beta-lactam resistance in GNR, but through a totally distinct mechanism. Through a detailed genetic investigation, including whole-genome analysis approaches, we demonstrate that high-level (clinical) beta-lactam resistance in vitro, in vivo, and in the clinical setting is driven by the inactivation of the dacB-encoded nonessential PBP4, which behaves as a trap target for beta-lactams. The inactivation of this PBP is shown to determine a highly efficient and complex beta-lactam resistance response, triggering overproduction of the chromosomal beta-lactamase AmpC and the specific activation of the CreBC (BlrAB) two-component regulator, which in turn plays a major role in resistance. These findings are a major step forward in our understanding of beta-lactam resistance biology, and, more importantly, they open up new perspectives on potential antibiotic targets for the treatment of infectious diseases.

0 Bookmarks
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the Gram-negative enterobacterium Erwinia (Pectobacterium) and Serratia sp. ATCC 39006, intrinisic resistance to the carbapenem antibiotic 1-carbapen-2-em-3-carboxylic acid is mediated by the CarF and CarG proteins, by anunknown mechanism. Here, we report a high-resolution crystal structure for the Serratia sp. ATCC 39006 carbapenem resistance protein, CarG. This structure of CarG is the first in the carbapenem instrinsic resistance (CIR) family of resistance proteins from carbapenem-producing bacteria. The crystal structure shows the protein to form a homodimer, in agreement with results from analytical gel filtration. The structure of CarG does not show homology with any known antibiotic resistance proteins nor does it belong to any well characterised protein structural family. However, it is a close structural homologue of the bacterial inhibitor of invertebrate lysozyme, PliI-Ah, with some interesting structural variations, including the absence of the catalytic site responsible for lysozyme inhibition. Both proteins show a unique β sandwich fold with short terminal α helices. The core of the protein is formed by stacked anti-parallel sheets that are individually very similar in the two proteins but differ in their packing interface, causing the splaying of the two sheets in CarG. Furthermore, a conserved cation binding site identified in CarG is absent from the homologue.
    Journal of Molecular Biology 02/2014; · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ceftolozane is a novel cephalosporin currently being developed with the β-lactamase inhibitor tazobactam for the treatment of complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), and ventilator-associated bacterial pneumonia (VABP). The chemical structure of ceftolozane is similar to that of ceftazidime, with the exception of a modified side-chain at the 3-position of the cephem nucleus, which confers potent antipseudomonal activity. As a β-lactam, its mechanism of action is the inhibition of penicillin-binding proteins (PBPs). Ceftolozane displays increased activity against Gram-negative bacilli, including those that harbor classical β-lactamases (e.g., TEM-1 and SHV-1), but, similar to other oxyimino-cephalosporins such as ceftazidime and ceftriaxone, it is compromised by extended-spectrum β-lactamases (ESBLs) and carbapenemases. The addition of tazobactam extends the activity of ceftolozane to include most ESBL producers as well as some anaerobic species. Ceftolozane is distinguished from other cephalosporins by its potent activity versus Pseudomonas aeruginosa, including various drug-resistant phenotypes such as carbapenem, piperacillin/tazobactam, and ceftazidime-resistant isolates, as well as those strains that are multidrug-resistant (MDR). Its antipseudomonal activity is attributed to its ability to evade the multitude of resistance mechanisms employed by P. aeruginosa, including efflux pumps, reduced uptake through porins and modification of PBPs. Ceftolozane demonstrates linear pharmacokinetics unaffected by the coadministration of tazobactam; specifically, it follows a two-compartmental model with linear elimination. Following single doses, ranging from 250 to 2,000 mg, over a 1-h intravenous infusion, ceftolozane displays a mean plasma half-life of 2.3 h (range 1.9-2.6 h), a steady-state volume of distribution that ranges from 13.1 to 17.6 L, and a mean clearance of 102.4 mL/min. It demonstrates low plasma protein binding (20 %), is primarily eliminated via urinary excretion (≥92 %), and may require dose adjustments in patients with a creatinine clearance <50 mL/min. Time-kill experiments and animal infection models have demonstrated that the pharmacokinetic-pharmacodynamic index that is best correlated with ceftolozane's in vivo efficacy is the percentage of time in which free plasma drug concentrations exceed the minimum inhibitory concentration of a given pathogen (%fT >MIC), as expected of β-lactams. Two phase II clinical trials have been conducted to evaluate ceftolozane ± tazobactam in the settings of cUTIs and cIAIs. One trial compared ceftolozane 1,000 mg every 8 h (q8h) versus ceftazidime 1,000 mg q8h in the treatment of cUTI, including pyelonephritis, and demonstrated similar microbiologic and clinical outcomes, as well as a similar incidence of adverse effects after 7-10 days of treatment, respectively. A second trial has been conducted comparing ceftolozane/tazobactam 1,000/500 mg and metronidazole 500 mg q8h versus meropenem 1,000 mg q8h in the treatment of cIAI. A number of phase I and phase II studies have reported ceftolozane to possess a good safety and tolerability profile, one that is consistent with that of other cephalosporins. In conclusion, ceftolozane is a new cephalosporin with activity versus MDR organisms including P. aeruginosa. Tazobactam allows the broadening of the spectrum of ceftolozane versus β-lactamase-producing Gram-negative bacilli including ESBLs. Potential roles for ceftolozane/tazobactam include empiric therapy where infection by a resistant Gram-negative organism (e.g., ESBL) is suspected, or as part of combination therapy (e.g., with metronidazole) where a polymicrobial infection is suspected. In addition, ceftolozane/tazobactam may represent alternative therapy to the third-generation cephalosporins after treatment failure or for documented infections due to Gram-negative bacilli producing ESBLs. Finally, the increased activity of ceftolozane/tazobactam versus P. aeruginosa, including MDR strains, may lead to the treatment of suspected and documented P. aeruginosa infections with this agent. Currently, ceftolozane/tazobactam is being evaluated in three phase III trials for the treatment of cUTI, cIAI, and VABP.
    Drugs 12/2013; · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful clues for the improvement and optimization of chemotherapy in order to appropriately treat pseudomonal infections while minimizing the emergence of resistance.
    Frontiers in Microbiology 01/2014; 4:422. · 3.90 Impact Factor

Full-text (3 Sources)

View
7 Downloads
Available from
Jul 9, 2014