Article

Life and death partners: apoptosis, autophagy and the cross-talk between them.

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
Cell death and differentiation (Impact Factor: 8.24). 04/2009; 16(7):966-75. DOI: 10.1038/cdd.2009.33
Source: PubMed

ABSTRACT It is not surprising that the demise of a cell is a complex well-controlled process. Apoptosis, the first genetically programmed death process identified, has been extensively studied and its contribution to the pathogenesis of disease well documented. Yet, apoptosis does not function alone to determine a cell's fate. More recently, autophagy, a process in which de novo-formed membrane-enclosed vesicles engulf and consume cellular components, has been shown to engage in a complex interplay with apoptosis. In some cellular settings, it can serve as a cell survival pathway, suppressing apoptosis, and in others, it can lead to death itself, either in collaboration with apoptosis or as a back-up mechanism when the former is defective. The molecular regulators of both pathways are inter-connected; numerous death stimuli are capable of activating either pathway, and both pathways share several genes that are critical for their respective execution. The cross-talk between apoptosis and autophagy is therefore quite complex, and sometimes contradictory, but surely critical to the overall fate of the cell. Furthermore, the cross-talk is a key factor in the outcome of death-related pathologies such as cancer, its development and treatment.

2 Bookmarks
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Newborns are more susceptible to severe disease from infection than adults, with maturation of immune responses implicated as a major factor. The type I interferon response delays mortality and limits viral replication in adult mice in a model of herpes simplex virus (HSV) encephalitis. We found that intact type I interferon signaling did not control HSV disease in the neonatal brain. However, the multifunctional HSV protein γ34.5 involved in countering type I interferon responses was important for virulence in the brain in both age groups. To investigate this observation further, we studied a specific function of γ34.5 which contributes to HSV pathogenesis in the adult brain, inhibition of the cellular process of autophagy. Surprisingly, we found that the beclin binding domain of γ34.5 responsible for inhibiting autophagy was dispensable for HSV disease in the neonatal brain, as infection of newborns with the deletion mutant decreased time to mortality compared to the rescue virus. Additionally, a functional beclin binding domain in HSV γ34.5 did not effectively inhibit autophagy in the neonate, unlike in the adult. Type I IFN responses promote autophagy in adult, a finding we confirmed in the adult brain after HSV infection; however, in the newborn brain we observed that autophagy was activated through a type I IFN-independent mechanism. Furthermore, autophagy in the wild-type neonatal mouse was associated with increased apoptosis in infected regions of the brain. Observations in the mouse model were consistent with those in a human case of neonatal HSV encephalitis. Our findings reveal age-dependent differences in autophagy for protection from HSV encephalitis, indicating developmental differences in induction and regulation of this innate defense mechanism after HSV infection in the neonatal brain.
    PLoS Pathogens 01/2015; 11(1):e1004580. · 8.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Head and neck squamous cell carcinoma (HNSCC) is a major killer worldwide and innovative measures are urgently warranted to lower the morbidity and mortality caused by this malignancy. Aberrant redox and metabolic status in HNSCC cells offer a unique opportunity to specifically target cancer cells. Therefore, we investigated the efficacy of grape seed extract (GSE) to target the redox and bioenergetic alterations in HNSCC cells. GSE treatment decreased the mitochondrial electron transport chain complex III activity, increased the mitochondrial superoxide levels and depleted the levels of cellular antioxidant (glutathione), thus resulting in the loss of mitochondrial membrane potential in human HNSCC Detroit 562 and FaDu cells. Polyethylene glycol-SOD addition reversed the GSE-mediated apoptosis without restoring complex III activity. Along with redox changes, GSE inhibited the extracellular acidification rate (representing glycolysis) and oxygen consumption rate (indicating oxidative phosphorylation) leading to metabolic stress in HNSCC cells. Molecular studies revealed that GSE activated AMP-activated protein kinase (AMPK), and suppressed Akt/mTOR/4E-BP1/S6K signaling in both Detroit 562 and FaDu cells. Interestingly, GSE increased the autophagic load specifically in FaDu cells, and autophagy inhibition significantly augmented the apoptosis in these cells. Consistent with in vitro results, in vivo analyses also showed that GSE feeding in nude mice activated AMPK and induced-autophagy in FaDu xenograft tumor tissues. Overall, these findings are innovative as we for the first time showed that GSE targets ETC complex III and induces oxidative and metabolic stress, thereby, causing autophagy and apoptotic death in HNSCC cells. © 2014 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 12/2014; · 4.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroendocrine differentiation (NED) is a process by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cancer cells. Accumulated evidence suggests that NED is associated with disease progression and therapy resistance in prostate cancer patients. We previously reported that by mimicking a clinical radiotherapy protocol, fractionated ionizing radiation (FIR) induces NED in prostate cancer cells. Interestingly, FIR-induced NED constitutes two distinct phases: a radioresistance phase in which a fraction of cells selectively survive during the first two week irradiation, and a neuroendocrine differentiation phase in which surviving cells differenti-ate into NE-like cancer cells during the second two week irradiation. We have also observed increased activation of the transcription factor cAMP response element binding (CREB) protein during the course of FIR-induced NED. To determine whether targeting NED can be explored as a radiosensitization approach, we employed two CREB target-ing strategies, CREB knockdown and overexpression of ACREB, a dominant-negative mutant of CREB, to target both phases. Our results showed that ACREB expression increased FIR-induced cell death and sensitized prostate cancer cells to radiation. Consistent with this, knockdown of CREB also inhibited FIR-induced NED and sensitized prostate cancer cells to radiation. Molecular analysis suggests that CREB targeting primarily increases radiation-induced pre-mitotic apoptosis. Taken together, our results suggest that targeting NED could be developed as a radiosensitization approach for prostate cancer radiotherapy.
    American Journal of Cancer Research 11/2014; 4(6):850-861. · 3.97 Impact Factor

Preview

Download
2 Downloads
Available from