Article

Comprehensive Characterization of Genes Required for Protein Folding in the Endoplasmic Reticulum

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
Science (Impact Factor: 31.48). 04/2009; 323(5922):1693-7. DOI: 10.1126/science.1167983
Source: PubMed

ABSTRACT Protein folding in the endoplasmic reticulum is a complex process whose malfunction is implicated in disease and aging. By using the cell's endogenous sensor (the unfolded protein response), we identified several hundred yeast genes with roles in endoplasmic reticulum folding and systematically characterized their functional interdependencies by measuring unfolded protein response levels in double mutants. This strategy revealed multiple conserved factors critical for endoplasmic reticulum folding, including an intimate dependence on the later secretory pathway, a previously uncharacterized six-protein transmembrane complex, and a co-chaperone complex that delivers tail-anchored proteins to their membrane insertion machinery. The use of a quantitative reporter in a comprehensive screen followed by systematic analysis of genetic dependencies should be broadly applicable to functional dissection of complex cellular processes from yeast to human.

Download full-text

Full-text

Available from: Maya Schuldiner, Dec 27, 2013
1 Follower
 · 
169 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-scale genetic interaction networks are progressively contributing to map the molecular circuitry that determines cellular behaviour. To what extent this mapping changes in response to different environmental or genetic conditions is however largely unknown. Here we assembled a genetic network using an in silico model of metabolism in yeast to explicitly ask how separate genetic backgrounds alter network structure. Backgrounds defined by single deletions of metabolically active enzymes induce strong rewiring when the deletion corresponds to a catabolic gene, evidencing a broad redistribution of fluxes to alternative pathways. We also show how change is more pronounced in interactions linking genes in distinct functional modules, and in those connections that present weak epistasis. These patterns reflect overall the distributed robustness of catabolism. In a second class of genetic backgrounds, in which a number of neutral mutations accumulate, we dominantly observe modifications in the negative interactions that together with an increase in the number of essential genes indicate a global reduction in buffering. Notably, neutral trajectories that originate considerable changes in the wild-type network comprise mutations that diminished the environmental plasticity of the corresponding metabolism, what emphasizes a mechanistic integration of genetic and environmental buffering. More generally, our work demonstrates how the specific mechanistic causes of robustness influence the architecture of multiconditional genetic interaction maps. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
    Genome Biology and Evolution 11/2014; 6(12). DOI:10.1093/gbe/evu255 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure of cells to reactive oxygen species (ROS) causes a rapid and significant drop in intracellular ATP levels. This energy depletion negatively affects ATP-dependent chaperone systems, making ROS-mediated protein unfolding and aggregation a potentially very challenging problem. Here we show that Get3, a protein involved in ATP-dependent targeting of tail-anchored (TA) proteins under nonstress conditions, turns into an effective ATP-independent chaperone when oxidized. Activation of Get3's chaperone function, which is a fully reversible process, involves disulfide bond formation, metal release, and its conversion into distinct, higher oligomeric structures. Mutational studies demonstrate that the chaperone activity of Get3 is functionally distinct from and likely mutually exclusive with its targeting function, and responsible for the oxidative stress-sensitive phenotype that has long been noted for yeast cells lacking functional Get3. These results provide convincing evidence that Get3 functions as a redox-regulated chaperone, effectively protecting eukaryotic cells against oxidative protein damage.
    Molecular Cell 10/2014; DOI:10.1016/j.molcel.2014.08.017 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins destined for the cell surface are first assessed in the endoplasmic reticulum (ER) for proper folding before release into the secretory pathway. This ensures that defective proteins are normally prevented from entering the extracellular environment, where they could be disruptive. Here, we report that, when ER folding capacity is saturated during stress, misfolded glycosylphosphatidylinositol-anchored proteins dissociate from resident ER chaperones, engage export receptors, and quantitatively leave the ER via vesicular transport to the Golgi. Clearance from the ER commences within minutes of acute ER stress, before the transcriptional component of the unfolded protein response is activated. These aberrant proteins then access the cell surface transiently before destruction in lysosomes. Inhibiting this stress-induced pathway by depleting the ER-export receptors leads to aggregation of the ER-retained misfolded protein. Thus, this rapid response alleviates the elevated burden of misfolded proteins in the ER at the onset of ER stress, promoting protein homeostasis in the ER.
    Cell 07/2014; 158(3):522-33. DOI:10.1016/j.cell.2014.06.026 · 33.12 Impact Factor