Article

Method of bioluminescence imaging for molecular imaging of physiological and pathological processes.

Department of Nuclear Medicine, University Hospital Leuven, Herestraat 49, Leuven B-3000, Belgium.
Methods (Impact Factor: 3.22). 04/2009; 48(2):139-45. DOI: 10.1016/j.ymeth.2009.03.013
Source: PubMed

ABSTRACT Molecular imaging has emerged as a powerful tool in basic, pre-clinical and clinical research for monitoring a variety of molecular and cellular processes in living organisms. Optical imaging techniques, mainly bioluminescence imaging, have extensively been used to study biological processes because of their exquisite sensitivity and high signal-to noise ratio. However, current applications have mainly been limited to small animals due to attenuation and scattering of light by tissues but efforts are ongoing to overcome these hurdles. Here, we focus on bioluminescence imaging by giving a brief overview of recent advances in instrumentation, current available reporter gene-reporter probe systems and applications such as cell trafficking, protein-protein interactions and imaging endogenous processes.

0 Bookmarks
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin sensitivity. To enable noninvasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models.
    ACS Chemical Biology 08/2012; · 5.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tight regulation of gene expression in the region where therapy is necessary and for the duration required to achieve a therapeutic effect and to minimise systemic toxicity is very important for clinical applications of gene therapy. Hyperthermia in combination with a temperature sensitive heat shock protein (Hsp70) promoter presents a unique approach allowing non-invasive spatio-temporal control of transgene expression. In this study we investigated the in vivo and ex vivo relationship between temperature and duration of thermal stress with respect to the resulting gene expression using an Arrhenius analysis. A transgenic mouse expressing the luciferase reporter gene under the transcriptional control of a thermosensitive promoter was used to assure identical genotype for in vivo (mouse leg) and ex vivo (bone marrow mononuclear and embryonic fibroblast cells) studies. The mouse leg and cells were heated at different temperatures and different exposure times. Bioluminescence imaging and in vitro enzymatic assay were used to measure the resulting transgene expression. We showed that temperature-induced Hsp70 promoter activation was modulated by both temperature as well as duration of hyperthermia. The relationship between temperature and duration of hyperthermia and the resulting reporter gene expression can be modelled by an Arrhenius analysis for both in vivo as well as ex vivo. However, the increase in reporter gene expression after elevating the temperature of the thermal stress with 1°C is not comparable for in vivo and ex vivo situations. This information may be valuable for optimising clinical gene therapy protocols.
    International Journal of Hyperthermia 06/2012; 28(5):441-50. · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeted fluorescence imaging agents such as IntegriSense 680 can be used to label integrin αvβ3 expressed in tumor cells and to distinguish tumor from normal tissues. Coupled with endomicroscopy and image-guided intervention devices, fluorescence contrast captured from the fiber-optic imaging technique can be used in a Minimally Invasive Multimodality Image Guided (MIMIG) system for on-site peripheral lung cancer diagnosis. In this work, we propose an automatic quantification approach for IntegriSense-based fluorescence endomicroscopy image sequences. First, a sliding time-window is used to calculate the histogram of the frames at a given timepoint, also denoted as the IntegriSense signal. The intensity distributions of the endomicroscopy image sequences can be briefly classified into three groups: high, middle and low intensities, which might correspond to tumor, normal tissue, and background (air) tissues within the lungs, respectively. At a given time-point, the histogram calculated from the sliding time-window is fit with a Gaussian mixture model, and the average and standard deviation (std), as well as the weight of each Gaussian distribution can be identified. Finally, a threshold can be used to the weighting parameter of the high intensity group for tumor information detection. This algorithm can be used as an automatic tumor detection tool from IntegriSense-based endomicroscopy. In experiments, we validated the algorithm using 20 IntegriSense-based fluorescence endomicroscopy image sequences collected from 6 rabbit experiments, where VX2 tumor was implanted into the lung of each rabbit, and image-guided endomicroscopy was performed. The automatic classification results were compared with manual results, and high sensitivity and specificity were obtained.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2012; · 0.20 Impact Factor